

# **Motion Controllers – Standard and Lite**

The RMC200, available in two versions – Standard (up to 50 axes) and Lite (up to 18 axes) – is Delta Motion's highest performance motion control platform for servo-hydraulic and servo-electric industrial applications. User-swappable modules provide flexibility and connectivity to many transducer types. Additionally, EtherCAT communications provides connectivity to drives, valves, sensors, and IO devices.

Powerful control algorithms offer advanced multi-axis synchronized motion, dual-loop control of position and pressure or position and force with bumpless transfer, advanced tuning capabilities specifically for hydraulic motion, and much more.

The RMC200's CPU modules come standard with Ethernet, supporting protocols such as EtherNet/IP, PROFINET, and Modbus/TCP, and are designed to integrate easily with your favorite PLCs, PCs, and HMIs.

Delta Motion's RMCTools software handles setup, programming, tuning, and diagnostics for the RMC200, as well as the RMC150 and RMC75 controllers. Excellent graphing features and easy-to-use wizards complement its user programs designed specifically for motion sequences.

### Flexible Multi-axis Capability

As Delta Motion's largest and most capable motion controller, a variety of base sizes accommodate modules that can be mixed and matched to support up to 50 axes of tightly synchronized motion.

### RMCTools Software

Setup, Programming, Tuning and Diagnostics

### HMIs, PLCs, and PCs

Machine Control and Operator Interface

Data Acquisition and Plant Supervisory



EtherCAT



4-20mA

±20mA

Hydraulic & Pneumatic Valves

Electric Motor Amplifiers and Drives

# Position, Pressure, Force Feedback

Quadrature,

MDT (PWM and

Start/Stop)

Linear transducers

Rotary encoders

Pressure sensors

Load cells



### **Industrial Applications**

- Forest products
- ▲ Testing
- Metals
- ▲ Presses
- ▲ Energy / Petrochemical
- Automotive
- Aerospace
- Plastics and rubber
- ▲ Entertainment
- Mining

More application information at deltamotion.com/applications.

### Communications

- ▲ Ethernet (100 Mbps), built into the CPU. Dual ports (single IP address) supporting star, linear, and ring topologies. Supports the following protocols as a slave only:
  - ▲ EtherNet/IP
  - ▲ PROFINET
  - ▲ Modbus/TCP
  - ▲ CSP (Allen-Bradley)
  - ▲ FINS (Omron)
  - ▲ Procedure Exist (Mitsubishi)
  - ▲ DMCP
- ▲ USB Port

For use with RMCTools software and RMCLink ActiveX and .Net assembly.

EtherCAT (New for 2024) EtherCAT master capability via the R200-ECAT MainDevice module.

# Feedback Types

- ▲ Synchronous Serial Interface (SSI)
  Linear and single- or multi-turn rotary
- Magnetostrictive Linear Displacement Transducer (MDT)
   RS-422 Start/Stop and PWM
- ▲ Analog
  - ±10V and 4-20mA
- ▲ Quadrature Encoder



# **Ordering Information**

Use the part numbers below when ordering. A full motion controller requires a base, power supply, CPU, Feature Key, and I/O modules.

| Base             |                                                                                                                                                                                                      |       |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Lite             |                                                                                                                                                                                                      |       |
| R200-B5L         | 5-slot base for CPU20L (3 I/O module slots)                                                                                                                                                          | p. 7  |
| R200-B7L         | 7-slot base for CPU20L (5 I/O module slots)                                                                                                                                                          |       |
| Standard         | γ (• γ γ )                                                                                                                                                                                           |       |
| R200-B5          | 5-slot base for CPU40 (3 I/O module slots)                                                                                                                                                           | n 7   |
| R200-B7          | 7-slot base for CPU40 (5 I/O module slots)                                                                                                                                                           |       |
| R200-B11         | 11-slot base for CPU40 (9 I/O module slots)                                                                                                                                                          |       |
| R200-B15         | 15-slot base for CPU40 (13 I/O module slots)                                                                                                                                                         |       |
|                  | 13-Slot base for Cr 040 (13 1/0 illodule slots)                                                                                                                                                      | p. /  |
| Power Supply     |                                                                                                                                                                                                      |       |
| <u>Lite</u>      | N                                                                                                                                                                                                    |       |
| n/a              | No power supply module is required. The power supply is integrated into the CPU.                                                                                                                     |       |
| Standard         |                                                                                                                                                                                                      |       |
| R200-PS4D        | 24Vdc-input, 35W output power supply module for the B5, B7, and B11 bases                                                                                                                            |       |
| R200-PS6D        | 24Vdc-input, 50W output power supply module for the B15 base                                                                                                                                         | p. 9  |
| CPU              |                                                                                                                                                                                                      |       |
| <u>Lite</u>      |                                                                                                                                                                                                      |       |
| R200-CPU20L      | RMC200 CPU Lite, up to 18 axes. Dual Ethernet ports, USB, SD card slot, display screen, 2 discrete inputs, 2 discrete outputs. Includes built-in power supply and resides in combined slots 0 and 1. |       |
| Standard         |                                                                                                                                                                                                      |       |
| R200-CPU40       | RMC200 CPU Standard, up to 50 axes. Dual Ethernet ports, USB, SD card slot, display screen, 2 discrete inputs, 2 discrete outputs                                                                    | p. 10 |
| Feature Key      |                                                                                                                                                                                                      |       |
| R2-KL <i>nnn</i> | Feature Key: A removable key mounted in the CPU. Must be ordered with the desired number of                                                                                                          | 10    |
| Do I             | control loops specified by <i>nnn</i> , (e.g R2-KL012 for twelve loops) with a minimum of four loops                                                                                                 | p. 13 |
| R2-Loop          | One control loop. This part number is to be used only when adding a Control Loop to an existing feature key, not when ordering together with a new feature key.                                      | p. 13 |
| Communication I  | Modules                                                                                                                                                                                              |       |
| R200-ECAT        | EtherCAT MainDevice: Dual EtherCAT ports (slot 2 only)                                                                                                                                               | p. 14 |
| I/O Modules      |                                                                                                                                                                                                      |       |
| R200-A8          | Eight analog inputs: ±10V or 4-20mA                                                                                                                                                                  | p. 15 |
| R200-S8          | <b>Eight SSI or MDT inputs, supports one quadrature input:</b> Synchronous Serial Interface (SSI) or Magnetostrictive Displacement Transducer (MDT) with Start/Stop or PWM signals, supports one     |       |
|                  | quadrature input                                                                                                                                                                                     |       |
| R200-Q4          | Four quadrature encoder inputs: RS-422, HTL, or TTL, with home and registration inputs                                                                                                               | -     |
| R200-LC8         | <b>Eight load cell inputs:</b> Up to 5mV/V with full Wheatstone bridge configurations                                                                                                                |       |
| R200-CA4         | Four analog outputs: ±10V, 4-20mA, or ±20mA, with fault inputs and enable outputs                                                                                                                    | •     |
| R200-CV8         | Eight analog outputs: ±10V only, with eight individually-configurable discrete I/O                                                                                                                   |       |
| R200-D24         | 24 Discrete I/O: 20 configurable I/O, 4 fixed high-speed inputs for 2 quadrature encoder inputs of 2 pulse counter inputs                                                                            |       |
| R200-U14         | Universal I/O: 4 analog inputs; 2 analog outputs; 4 discrete I/O points; 2 channels for SSI, MDT, or Quadrature encoder inputs, each with an additional high-speed discrete input                    | or    |
| Options          |                                                                                                                                                                                                      |       |
| R2-SC            | Slot Cover: Cover for empty I/O slots                                                                                                                                                                | p. 34 |

### Accessories

| SD Card                       | p. 34 |
|-------------------------------|-------|
| Cables                        | ·     |
| Voltage-to-Current Converters | p. 35 |
| Terminal Blocks               | · ·   |

# **Online Configuration Tool**

Create your own RMC200 controller and request a quote!
Go to deltamotion.com and choose
Request a Quote Online.



# **RMCTools Software**

RMCTools is a powerful motion control software package for setting up, tuning, troubleshooting, programming, and controlling all features of Delta Motion 's multi-axis RMC200 controllers from a PC. RMCTools also supports the RMC75 and RMC150 controllers.

Delta Motion's intuitive and easy-to-use RMCTools software features flexible User Programs with extensive commands and the ability to embed mathematical expressions. Setup and tuning wizards reduce startup times, and the graphical diagnostics tools speed up troubleshooting of the entire motion system. Extensive context-sensitive help is included in RMCTools.

RMCTools is available for download from **deltamotion.com**.

Supported Operating Systems: Windows® 7/8.1/10/11

### **RMCTools Features**

Delta Motion's powerful RMCTools software makes setup, tuning, and troubleshooting motion systems easier than ever.

### Setup

### ▲ Wizards

Easy-to-use wizards include New Project, New Controller, Scale & Offset, and Tuning.

### ▲ Full Parameter Set

Monitor all axis status registers and modify parameters.

### **Tuning and Diagnostics**

### ▲ Plots

Plot any item, up to 128 items per plot, sampled down to the control loop resolution. XY plot view supported.

### ▲ Tuning Wizard

Quickly and accurately tune your axes, using a slider bar to choose from a range of gains appropriate for your system.

### ▲ Event Log

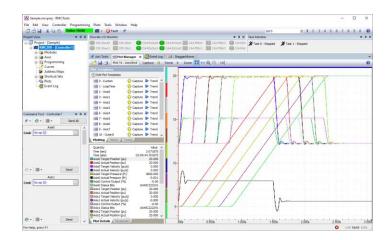
Speed troubleshooting by recording events such as parameter changes, commands, errors, and communications.

### **Programming**

### ▲ Commands

Issue commands directly from RMCTools. Use Shortcut Commands to quickly issue commands to speed up the tuning process.

### ▲ User Programs


Easily create programs to issue sequences of commands. Supports complex logic with branching and looping.

### ▲ Program Triggers

Start user programs automatically based on user-defined events such as discrete inputs, error conditions, etc.

### ▲ Mathematical Expressions

Expressions provide flexible programming capability for advanced calculations and machine control sequences.



# **Communication Software**

### RMCLink ActiveX Control and .NET Assembly

RMCLink enables full monitoring and control of RMC200 motion controllers via Ethernet and USB communications on Windows®-based PCs from custom applications in languages such as Visual Basic, C++, C#, VBScript, VBA (Microsoft Excel®), PHP, Jscript, Python, and MATLAB®.

RMCLink comes with fully-functioning sample projects to help you get up and running quickly. The help includes detailed walk-throughs and numerous code samples.

RMCLink, with extensive examples, is available for download from <u>deltamotion.com</u>. RMCLink also supports the RMC75 and RMC150 controllers.

For non-Windows applications, such as Linux or embedded C, Delta Motion provides sample C code for communicating with the RMC using Delta Motion's simple DMCP protocol.

Microsoft, Windows, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

### Instrument Driver for Use with LabVIEW

VIs created by Delta Motion for use with LabVIEW<sup>TM</sup> software provide full-fledged examples including plot uploading and trending. The VIs support Ethernet communications and are available from the Instrument Driver portion of National Instruments' website.

LabVIEW is a trademark of National Instruments. Neither Delta Motion, nor any software programs or other goods or services offered by Delta Motion, are affiliated with, endorsed by, or sponsored by National Instruments.

# **RMC200 Control Features**

The RMC200 provides an extensive set of motion commands and programming capability for quick and easy yet flexible motion control for virtually every motion application.

### **Control Features**

### **Closed Loop Control**

Full PID loop control with velocity, acceleration, and jerk feed forwards for precise synchronized motion. Directional gain factors support fluid power control.

### **Position Control**

- ▲ Point-to-Point moves
- S-curves
- ▲ Speed at Position
- ▲ Gearing
- Cyclic Sinusoidal Motion
- Splines and Cams
- Rotary motion (incremental and absolute)

### **Velocity Control**

Velocity control with position or velocity feedback

### **Pressure and Force Control**

- Pressure sensor, load cell, or differential force
- ▲ Linear or S-curve Ramps
- ▲ Gearing
- Cyclic Sinusoidal Profile
- Splines and Cams

### **Position-Pressure and Position-Force Control**

- Transition seamlessly between position or velocity control and pressure or force control.
- Pressure or Force Limit limit the pressure or force during a position or velocity move.

### **Synchronized Motion**

Many features for various types of synchronized motion:

- ▲ Ratioed moves
- ▲ Gearing
- ▲ Camming
- Tracking with velocity and acceleration limits

### **Active Damping**

For high-performance control of pneumatics and difficult systems.

### **Higher-Order Control**

Includes Double Differential gain and Jerk Feed Forward for systems with a low natural frequency.

### **Open Loop Control**

Seamless transition from open loop to closed loop. Ramp Control Output between two values, or ramp based on position for hard-to-control systems.

### **Quick Move**

Move in open loop and stop in closed loop for fast, smooth motion with accurate stops.

### Valve Compensation

Output Deadband for overlapped spools and Valve Linearization for non-linear flow.

### **Custom Feedback**

Control using any calculated value as feedback.

- Sum, difference, average, etc.
- Switch feedback on-the-fly
- Redundant feedback
- ▲ Feedback linearization

### High-level programming

### **User Programs**

Programs are easy-to-understand sequences of commands. Run multiple programs simultaneously to handle axis commands and machine control functions.

### **Program Triggers**

Start user programs automatically based on user-defined events such as discrete inputs, error conditions, etc.

### **Variables**

Recipes and other user parameters can be stored for use by user programs.

### Mathematical Expressions

Expressions provide flexible programming capability for advanced calculations and machine control sequences.

### **Troubleshooting and Monitoring**

### Plots

Plot any item, up to 128 items per plot, sampled down to the control loop resolution. XY plot view supported.

### **Event Log**

Speeds troubleshooting by recording events such as parameter changes, commands, errors, and communications.

### **Fault Handling**

### **Closed Loop Stops**

Ramp speed to zero at a specified rate and hold position.

### **Open Loop Stops**

Ramp output voltage to zero at a specified rate.

### Multi-axis (group) Stops

A fault on one axis halts multiple axes when configured as a group.

### **AutoStops**

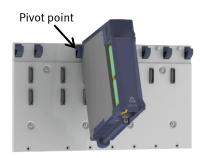
The response of axes to each fault type is easily configurable.

# **Modular Design**

### Modules Rock In, Rock Out

The RMC200 modules are designed to be user-installable and removable. The modules rock in and out, rotating around a pivot point. Modules may be installed and removed without being damaged while the RMC200 is powered. The pivot action ensures the electrical pins engage the base pins in a certain order, preventing damage to the module. Note: this is not hot-swapping in the sense of removing modules while equipment is operating.

### Materials and Construction


An aluminum base and modules composed of 22 gauge nickel-plated steel sheet metal and PC/ABS plastic provide a long-lasting industrial controller. Indicator LEDs on each module aid troubleshooting and doors make for a clean appearance. The top of the modules are angled downward to help ensure space for airflow and to allow the modules to be removed while remaining within the footprint of the base.

### Module Hold-down Screws

Each module is secured to the base via a captive screw, which extends toward the front of the module for easy screwdriver access.

### **Unpluggable Terminal Blocks**

Wiring connections are made via unpluggable terminal blocks to facilitate the removal of modules in the field. Terminal blocks latch into place and the push-in wire capture style facilitates efficient and reliable wiring. A wire hold-down clip and cable tie points help keep wiring organized.





### General RMC200 Specifications

| Mechanical          |     |                                                   |
|---------------------|-----|---------------------------------------------------|
| Mounting            |     | Panel-mount                                       |
| Dimensions with     | B5L | 7.0 x 7.9 x 5.8 in. (WxHxD) (177 x 200 x 146 mm)  |
| mounting tabs       | B7L | 9.7 x 7.9 x 5.8 in. (WxHxD) (246 x 200 x 146 mm)  |
|                     | B5  | 7.9 x 7.9 x 5.8 in. (WxHxD) (201 x 200 x 146 mm)  |
|                     | B7  | 10.7 x 7.9 x 5.8 in. (WxHxD) (270 x 200 x 146 mm) |
|                     | B11 | 16.2 x 7.9 x 5.8 in. (WxHxD) (410 x 200 x 146 mm) |
|                     | B15 | 21.9 x 7.9 x 5.8 in. (WxHxD) (555 x 200 x 146 mm) |
| Environment         |     |                                                   |
| Operating temperatu | ire | -4 to +140°F (-20 to +60°C)                       |
| Storage temperature |     | -40 to +185°F (-40 to +85°C)                      |
| Humidity            |     | 5-95%, non-condensing                             |
| Agency compliance   |     | CE                                                |
|                     |     | UL and CUL                                        |

### **Electrical Isolation**

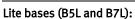
All isolation on the RMC200 is functional isolation at 500 Vac. This is not safety isolation and is not tested on individual modules.

# RMC200

### **Power Consumption and Dissipation**

Power consumption is the power the module draws from the RMC's power supply. Power dissipation is the heat generated by the module. Power dissipation may be more than the power drawn from the power supply due to power received from devices connected to discrete inputs, discrete outputs, encoder inputs, etc.

| Module | Max Consumption                                   | Max Dissipation                                | Details                                                                                                              |
|--------|---------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| B5L    |                                                   | 2.0W                                           |                                                                                                                      |
| B7L    |                                                   | 2.7W                                           |                                                                                                                      |
| B5     |                                                   | 2.5W                                           |                                                                                                                      |
| B7     |                                                   | 2.7W                                           |                                                                                                                      |
| B11    |                                                   | 3.0W                                           |                                                                                                                      |
| B15    |                                                   | 3.2W                                           |                                                                                                                      |
| PS4D   |                                                   | 7.0W                                           |                                                                                                                      |
| PS6D   |                                                   | 10.0W                                          |                                                                                                                      |
| CPU20L |                                                   | 9.0W                                           | Includes power dissipation of integrated power supply                                                                |
| CPU40  |                                                   | 8.0W                                           |                                                                                                                      |
| ECAT   | 2.0 W                                             | 2.0 W                                          |                                                                                                                      |
| CA4    | 1.4W, voltage outputs                             | 1.4W, voltage outputs                          | Dissipation in current mode is dependent on the                                                                      |
|        | 2.8W, current outputs                             | 2.8W, current outputs                          | resistance of the load                                                                                               |
| CV8    | 2.0W                                              | 2.0W                                           |                                                                                                                      |
| S8     | 1.8W                                              | 1.8W                                           |                                                                                                                      |
| A8     | 1.2W, no Exciter Output 2.4W, with Exciter Output | 1.4 – 2.4W, depending on use of Exciter Output | Power dissipation with Exciter Output can be much lower than 2.4W if most of the power goes into the potentiometers. |
| Q4     | 1.4W                                              | 1.4 W                                          |                                                                                                                      |
| LC8    | 1.3W, no Exciter Output 3.2W, with Exciter Output | 1.4 - 2.4W                                     | Depends on use of Exciter Output                                                                                     |
| U14    | 2.6W, voltage outputs                             | 2.6W, voltage outputs                          | All analog outputs in voltage mode                                                                                   |
|        | 3.2W, current outputs                             | 3.2W, current outputs                          | All analog outputs in current mode                                                                                   |
| D24    | 1.1W                                              | 1.0W, plus 50mW per I/O point used             |                                                                                                                      |


### **Module Mass**

| Module           | Module | Connector                   |
|------------------|--------|-----------------------------|
| B5L              | 356 g  |                             |
| B7L              | 485 g  |                             |
| B5               | 367 g  |                             |
| B7               | 512 g  |                             |
| B11              | 816 g  |                             |
| B15              | 1016 g |                             |
| PS4D             | 463 g  | 6 g                         |
| PS6D             | 541 g  | 6 g                         |
| CPU20L           | 908 g  | power 2 g, discrete I/O 5 g |
| CPU40            | 831 g  | discrete I/O 5 g            |
| ECAT             | 400 g  |                             |
| CA4              | 393 g  | 10 g each                   |
| CV8              | 397 g  | 13 g each                   |
| S8               | 386 g  | 13 g each                   |
| A8               | 399 g  | 13 g each                   |
| Q4               | 388 g  | 13 g each                   |
| LC8              | 379 g  | 13 g each                   |
| U14              | 401 g  | 13 g each                   |
| D24              | 397 g  | 13 g each                   |
| Blank slot cover | 20 g   |                             |

# **Base Modules**

Base modules are available in multiple sizes to accommodate any application.

| Base      | Total Slots | I/O Module Slots | Compatible CPU |
|-----------|-------------|------------------|----------------|
| Lite:     |             |                  |                |
| B5L       | 5           | 3                | CPU20L         |
| B7L       | 7           | 5                | CPU20L         |
| Standard: |             |                  |                |
| B5        | 5           | 3                | CPU40          |
| B7        | 7           | 5                | CPU40          |
| B11       | 11          | 9                | CPU40          |
| B15       | 15          | 13               | CPU40          |



Slots 0 and 1 are combined into a single physical slot and support the Lite CPU module that has an integrated power supply.

### Standard bases:

Slot 0 supports a power supply module, and slot 1 supports the CPU module.

### All bases:

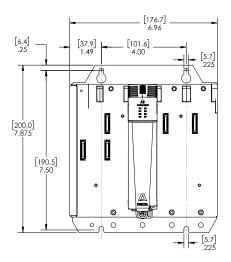
The first I/O slot (slot 2) supports any I/O module or the R200-ECAT module.



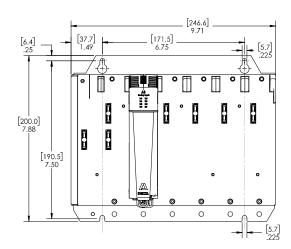
B5L Base



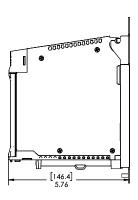
B7 Base


## **Specifications and Dimensions**

Base modules are aluminum with a conductive finish. Base modules are panel-mounted. An 8-32 threaded stud is provided on the bottom flange for a ground connection.


See also General Specifications on page 5.

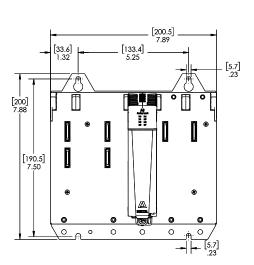
Units are in inches [mm]. Mounting holes sized for #10 or 5mm screws.

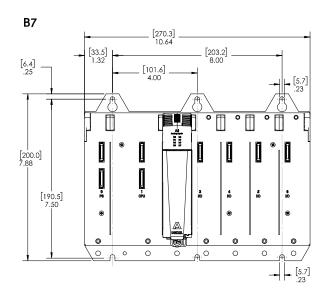

B5L

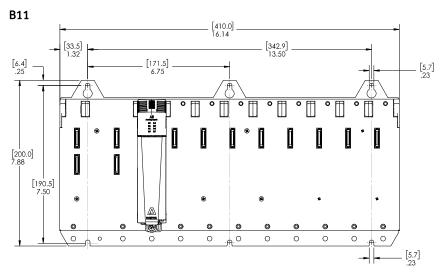


B7L

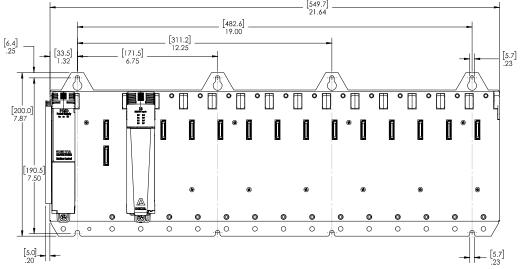



**Side View** (with I/O modules) B5L, B7L, B5, B7, B11, B15





See <u>deltamotion.com/dloads/</u> for CAD files.

Units are in inches [mm]. Mounting holes sized for #10 or 5mm screws.


**B5** 







**B15** The PS6D heat sink protrudes beyond the left of the base by 0.20 inches.



See deltamotion.com/dloads/ for CAD files.

# Power Supply Modules: PS4D and PS6D

A power supply module is required for the Standard Bases (B5, B7, B11, B15). The Lite Bases (B5L, B7L) do not require a separate power supply since the power supply is built into the CPU.

PS4D: 24Vdc input, applies 35W to the B5, B7 or B11 base

PS6D: 24Vdc input, applies 50W to the B15 base

The PS4D and PS6D power supply modules require a nominal 24Vdc supply. The PS4D is able to power a fully-loaded B5, B7 or B11 base. The PS6D is able to power a fully-loaded B15 base. Both include status indicator LEDs and an unpluggable terminal block.

### **Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| Power         |                                                                                         |
|---------------|-----------------------------------------------------------------------------------------|
| Input Power   | PS4D: 42W max (1.8A at 24Vdc)                                                           |
|               | PS6D: 60W max (2.5A at 24Vdc)                                                           |
| Input Voltage | Recommended 24Vdc ± 15% (20.4 – 27.6V), 30V max.                                        |
|               | Overvoltage shutdown at 36V.                                                            |
| Output Power  | PS4D: 35W max                                                                           |
|               | PS6D: 50W max                                                                           |
| LEDs          |                                                                                         |
| Vin           | Input voltage level indicator:                                                          |
|               | Green: Normal range (20.4 – 27.6Vdc)                                                    |
|               | Orange: Voltage high or low, still operating                                            |
|               | Steady Red: Under- or over-voltage (outside of 18 – 36V), or reverse voltage,           |
|               | not operating                                                                           |
| On            | Output power indicator:                                                                 |
|               | Off: Not providing power to base                                                        |
|               | Green: Providing power to base                                                          |
| Flt           | Faults indicator:                                                                       |
|               | Orange: Temperature high or power draw high, still operating                            |
|               | Flashing Red: Under- or over-voltage, over-power, or over-temperature, output shut down |
|               | Flashing Red/Green: Module not plugged into base, output shut down                      |



Shown without doors

### Pin-out

The unpluggable terminal block with spring-cage connections accepts stranded wire up to 12 gauge.

| Terminal |                                                                  |
|----------|------------------------------------------------------------------|
| Block    |                                                                  |
| +24V     | 24 Volt input power                                              |
| 24Cmn    | 24 Volt input power common                                       |
| Case     | Electrically connected to the power supply metal and base metal. |

| Stranded Wire and Ferrule Size |                            |
|--------------------------------|----------------------------|
| Conductor cross section        | 24 – 12 AWG                |
|                                | $0.2 - 2.5 \text{ mm}^2$   |
| Conductor cross section,       | 0.25 - 2.5 mm <sup>2</sup> |
| ferrule no plastic sleeve      |                            |
| Conductor cross section,       | 0.25 - 2.5 mm <sup>2</sup> |
| ferrule with plastic sleeve    |                            |
| Stripping Length               | 10 mm                      |
| Ferrule Length                 | 10 – 12 mm                 |
|                                |                            |

# **CPU Modules: CPU20L and CPU40**

### Motion controller central processing unit

| СРИ    | Max Physical<br>Control Axes | Max Control Loops | Max Total Axes, Including<br>Virtual and Reference |
|--------|------------------------------|-------------------|----------------------------------------------------|
| CPU20L | 18                           | 36                | 48                                                 |
| CPU40  | 50                           | 100               | 128                                                |

The Standard CPU40 and Lite CPU20L include:

- ▲ 2 Ethernet ports (single IP address) supporting star, linear, and ring topologies.
- ▲ Supports the following protocols as a slave:
  - ▲ EtherNet/IP
- ▲ FINS (Omron)
- ▲ PROFINET
- ▲ DMCP (Delta Motion Control Protocol)
- ▲ Modbus/TCP
- Procedure Exist (Mitsubishi)
- ▲ CSP (Allen-Bradley)
- ▲ USB 2.0 port (480 Mbps) for communications with RMCTools and RMCLink
- ▲ Two 12-24Vdc discrete inputs, individually isolated
- ▲ Two solid state relay (SSR) discrete outputs, individually isolated
- Display screen with navigation buttons
- ▲ SD card slot for saving and restoring the controller project and for generalpurpose file storage (SD card sold separately)
- ▲ Indicator LFD
- ▲ Feature Key slot, accessible from the back of the module

# RMC200 RMC200

### **Bases and Power Supply**

The CPU20L is compatible with the B5L and B7L bases. The CPU20L includes a built-in power supply that supplies power to all the modules via the base. The CPU20L fits into the combined slots 0 and 1.

The CPU40 is compatible with the B5, B7, B11, and B15 bases. The CPU40 requires a separate power supply module that supplies power to all the modules via the base.

### **CPU20L and CPU40 Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| Motion Control              |                                                              |
|-----------------------------|--------------------------------------------------------------|
| Control loop times          | 125 μs, 250 μs, 500 μs, 1 ms, 2 ms, or 4 ms                  |
| USB Monitor Port (for setup | o, programming and maintenance only)                         |
| Connector                   | USB "B" Receptacle                                           |
| Data Rate                   | High-speed (480 Mbps)                                        |
| Discrete Inputs (2)         |                                                              |
| Input type                  | 12-24Vdc inputs; polarity independent, individually isolated |
| Logic polarity              | True "High"                                                  |
| Input "High" range          | 9 to 26.4Vdc, 3mA maximum                                    |
| Input "Low" range           | 0 to 5Vdc, <1mA                                              |
| Maximum propagation delay   | 100 μs Off to On                                             |
|                             | 750 μs On to Off (open collector drive)                      |
| Discrete Outputs (2)        |                                                              |
| Output type                 | Solid State Relays (SSR), individually isolated              |
| Load types                  | DC general use, DC resistance, DC Pilot Duty                 |
| Rated voltage               | max ±30Vdc                                                   |
| Maximum current             | ±75mA                                                        |
| Maximum propagation delay   | 2 ms turn-on, 0.5 ms turn-off                                |
| Logic 1 (True, On)          | Low impedance (15Ω maximum)                                  |
| Logic 0 (False, Off)        | High impedance (<1 μA leakage current at 30V)                |

### **CPU20L and CPU40 Specifications (continued)**

| Ethernet Interface                  |                                                                                  |  |
|-------------------------------------|----------------------------------------------------------------------------------|--|
| Ports                               | 2 ports (single IP address)                                                      |  |
| Supported Topologies                | Star, linear, or ring                                                            |  |
| Hardware interface                  | IEEE 802.3 for 100BASE-T (twisted pair)                                          |  |
| Data Rate                           | 100 Mbps                                                                         |  |
| Duplex                              | Full Duplex                                                                      |  |
| Features                            | '                                                                                |  |
|                                     | Auto-negotiation, Auto-crossover (MDI/MDI-X)                                     |  |
| Connectors Cable                    | RJ-45 (2)                                                                        |  |
|                                     | CAT5, CAT5e or CAT6, UTP or STP                                                  |  |
| Ethernet Configuration              |                                                                                  |  |
| Configuration parameters            | IP address, subnet mask, gateway address, enable/disable ports, auto-negotiation |  |
| Configuration methods               | BOOTP, DHCP, or static                                                           |  |
| Ethernet Protocol Support           |                                                                                  |  |
| Application protocols               | EtherNet/IP I/O and messaging                                                    |  |
| (slave only for all)                | PROFINET RT (I/O) and data records                                               |  |
|                                     | Modbus/TCP                                                                       |  |
|                                     | CSP (Allen-Bradley)                                                              |  |
|                                     | FINS (Omron)                                                                     |  |
|                                     | DMCP (Delta Motion Control Protocol)                                             |  |
|                                     | Procedure Exist (Mitsubishi)                                                     |  |
| Framing protocol                    | Ethernet II                                                                      |  |
| Internet protocol                   | IP (includes ICMP, ARP, and Address Collision Detection)                         |  |
| Transport protocols                 | TCP, UDP                                                                         |  |
| Network management protocols        | SNMPv1, SNMPv2c, LLDP                                                            |  |
| Ring management protocols           | Device Level Ring (DLR), Media Redundancy Protocol (MRP)                         |  |
| SD Card Slot (card sold separately) |                                                                                  |  |
| Form factor                         | Standard size (32 mm × 24 mm × 2.1 mm)                                           |  |
| Supported families                  | SD (SDSC) (standard capacity) and SDHC (high capacity)                           |  |
| Supported file system               | FAT32 and FAT16                                                                  |  |
| Supported capacities                | Up to 32 GB                                                                      |  |
|                                     |                                                                                  |  |

# Discrete I/O Pin-out

The discrete inputs and outputs are individually isolated. Inputs are polarity-independent.

| Terminal Block 1 (TB1) |                                                          |  |  |  |
|------------------------|----------------------------------------------------------|--|--|--|
| DIn0+                  | General-purpose input 0, 12 -24Vdc                       |  |  |  |
| DIn0-                  | General-purpose input o, 12 -24vuc                       |  |  |  |
| Dln1+                  | General-purpose input 1, 12 -24Vdc                       |  |  |  |
| Dln1-                  | General-purpose input 1, 12 -24vuc                       |  |  |  |
| DOut0+                 | Conoral purpose output 0. Solid State Below up to 20\/de |  |  |  |
| DOut0-                 | General-purpose output 0, Solid State Relay up to 30Vdc  |  |  |  |
| DOut1+                 | General-purpose output 1, Solid State Relay up to 30Vdc  |  |  |  |
| DOut1-                 | General-purpose output 1, Solid State Relay up to 30 vdc |  |  |  |
|                        |                                                          |  |  |  |

### Discrete I/O Terminal Block

The unpluggable terminal block includes spring-cage terminals. User-supplied ferrules provide for push-in connections.

| Stranded Wire and Ferrule Size                       |                            |
|------------------------------------------------------|----------------------------|
| Conductor cross section                              | 24 – 16 AWG                |
|                                                      | $0.2 - 1.5 \text{ mm}^2$   |
| Conductor cross section, ferrule no plastic sleeve   | 0.2 – 1.5 mm <sup>2</sup>  |
| Conductor cross section, ferrule with plastic sleeve | 0.2 – 0.75 mm <sup>2</sup> |
| Stripping Length                                     | 10 mm                      |
| Ferrule Length                                       | 10 – 12 mm                 |

### Power Input Specifications (CPU20L Only)

| Power Input (CPU20  | L Only)                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------|
| Input Power         | 28W max (1.2A at 24Vdc)                                                                 |
| Input Voltage       | Recommended 24Vdc ± 15% (20.4 – 27.6V), 30V max.                                        |
|                     | Overvoltage shutdown at 36V.                                                            |
| Output Power        | 19W max                                                                                 |
| Power Input LEDs (C | CPU20L Only)                                                                            |
| Vin                 | Input voltage level indicator:                                                          |
|                     | Green: Normal range (20.4 – 27.6Vdc)                                                    |
|                     | Orange: Voltage high or low, still operating                                            |
|                     | Steady Red: Under- or over-voltage (outside of 18 – 36V), or reverse voltage,           |
|                     | not operating                                                                           |
| On                  | Output power indicator:                                                                 |
|                     | Off: Not providing power to base                                                        |
|                     | Green: Providing power to base                                                          |
| Flt                 | Faults indicator:                                                                       |
|                     | Orange: Temperature high or power draw high, still operating                            |
|                     | Flashing Red: Under- or over-voltage, over-power, or over-temperature, output shut down |
|                     | Flashing Red/Green: Module not plugged into base, output shut down                      |

# Power Input Pin-out (CPU20L Only)

The unpluggable terminal block with spring-cage connections accepts stranded wire up to 16 gauge. This power input terminal block is different than the power input terminal block on the PS4D and PS6D power supply modules.

| Power Input Pin-out |                                                                |  |  |
|---------------------|----------------------------------------------------------------|--|--|
| +24V                | 24 Volt input power                                            |  |  |
| 24Cmn               | 24 Volt input power common                                     |  |  |
| Case                | Electrically connected to the CPU module metal and base metal. |  |  |

| 24 – 16 AWG                |
|----------------------------|
| $0.2 - 1.5 \text{ mm}^2$   |
| 0.25 - 1.5 mm <sup>2</sup> |
|                            |
| $0.25 - 0.75 \text{ mm}^2$ |
|                            |
| 10 mm                      |
| 10 – 12 mm                 |
|                            |

# **Feature Key**

The Feature Key is a rugged, removable, and field-upgradable token that is mounted in the CPU. The Feature Key provides the user-specified control features available to the motion controller.

Feature Keys are normally ordered together with the CPU module and are ordered with specified features. Features can also be added to an existing Feature Key via a remote process.

The Feature Key is required for the RMC200 operation of closed-loop control.

### Feature Key Control Features

The following features are available on the Feature Key:

### **Control Loops**

The control loops on the feature key define the number of control axes. Four control loops are included for the nominal price of the Key itself. The number of control loops required per axis are:

Single-loop axis: 1 control loop

An axis is a single-loop axis if it controls one quantity, such as only position, or only force. A cascading outer loop axis that controls one quantity is a single-loop axis.

• Dual-loop axis: 2 control loops

An axis that controls two quantities such as position and force. A cascading outer loop axis that controls two quantities is a dual-loop axis.

Reference axis: 0 control loops

An axis with only an input, and no control output.

Virtual axis: 0 control loops

A type of reference axis with no input and no control output, and provides virtual motion.

Output only axis: 0 control loops

An axis with only an analog output.

### Ordering a Feature Key with Control Loops

Part number:

R2-KL*nnn*, where *nnn* is the number of control loops:

- ▲ CPU20L: minimum of four (004) loops, maximum 36 (036) loops
- ▲ CPU40: minimum of four (004) loops, maximum 100 (100) loops

### Adding Loops to an Existing Feature Key

Control loops may be added to existing feature keys via a remote process. This requires that the customer use RMCTools to connect to the RMC200 that has the feature key installed, generate a feature request file, email the file to Delta Motion, and then apply the received response file using RMCTools.

Part number: R2-Loop

### **Feature Key Specifications**

| Specifications – Apply only to the Feature Key, not the CPU or other modules |                                                                        |  |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| Contact Life 10,000 cycles min.                                              |                                                                        |  |  |  |
| ESD Protection                                                               | 15kV                                                                   |  |  |  |
| Read Cycles                                                                  | Unlimited                                                              |  |  |  |
| Write Cycles                                                                 | 100,000 minimum (writes are performed only when applying new features) |  |  |  |
| Data Life (Storage) at 35°C                                                  | 30 years minimum, 50 years typical                                     |  |  |  |
| Operational Temperature                                                      | -40°C to +85°C (-40°F to +185°F)                                       |  |  |  |
| Storage Temperature                                                          | -40°C to +100°C (-40°F to +212°F)                                      |  |  |  |



# **Communication Module: ECAT**

### **EtherCAT MainDevice with Redundancy Port**

The ECAT module provides EtherCAT MainDevice functionality, allowing control of electric motor drives and communication with other EtherCAT subordinate devices such as sensors and actuators. With two RJ-45 ports, the ECAT module supports cable redundancy.

The RMC200 supports position, velocity, pressure, force and torque control, and single and dual-loop axes via EtherCAT. Axes may be defined with output and feedback in any combination of EtherCAT data or directly connected sensors or actuators. The RMC200 EtherCAT supports CANopen over EtherCAT (CoE) CiA402 drive profiles and CiA408 valve profiles.

The ECAT module is supported by all RMC200 bases and may only be installed in slot 2 (the slot immediately to the right of the CPU). LED indicators provide information on the network state, redundancy state, and individual port states.

### **ECAT Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| EtherCAT Interface   |                                                        |  |  |  |
|----------------------|--------------------------------------------------------|--|--|--|
| Ports                | 2 ports:                                               |  |  |  |
|                      | ECAT1: Main port                                       |  |  |  |
|                      | ECAT2: Redundancy port                                 |  |  |  |
| Supported Topologies | Line, star, and ring                                   |  |  |  |
| Hardware Interface   | IEEE 802.3 for 100BASE-T (twisted pair)                |  |  |  |
| Data Rate            | 100 Mbps                                               |  |  |  |
| Duplex               | Full Duplex                                            |  |  |  |
| Features             | Auto-negotiation, Auto-crossover (MDI/MDI-X)           |  |  |  |
| Connectors           | RJ-45 (2)                                              |  |  |  |
| Cable                | CAT5, CAT5e or CAT6, UTP or STP                        |  |  |  |
| Cycle Times          | 250 μs minimum                                         |  |  |  |
| Distributed Clock    | Subordinate devices that support DC on the network are |  |  |  |
|                      | synchronized with the motion loop of the RMC200        |  |  |  |

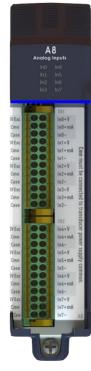


Shown without door



EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

# I/O Module: A8


### 8 Analog Inputs, ±10V or 4-20mA

The A8 module provides eight analog inputs for ±10V or 4-20mA signals, with 18-bit resolution ADCs with oversampling for increased effective resolution and noise reduction. The A8 module also includes 10Vdc exciter outputs intended for use with potentiometers. One LED per channel indicates the state of the respective input.

### A8 Specifications

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| Inputs                        |                                                                                      |
|-------------------------------|--------------------------------------------------------------------------------------|
| Inputs                        | Eight 18-bit differential (higher resolution obtained by oversampling)               |
| Overvoltage protection        | ±24V, momentary                                                                      |
| Input ranges                  | ±10V, 4-20mA, ±20mA (each input independently configurable)                          |
| Max differential ranges       | Voltage: ±10.5V; Current: ±20mA (continuous), -25mA to +25mA (peak)                  |
| Max input voltage ranges      | In+ or In- relative to Cmn: -14V to +14V typical                                     |
| Input impedance               | Voltage input: $1M\Omega$ , Current input: $250\Omega$                               |
| Input filter slew rate        | 25V/ms                                                                               |
| Sampling frequency            | 200kHz internal. Provides one filtered sample per control loop (e.g. 1 msec) to CPU. |
| Sampling filter               | 250Hz – 4kHz, user-selectable internal low-pass sampling filter.                     |
| Offset drift with temperature | 0.2 LSB/°C typical (±10V range)                                                      |
| Gain drift with temperature   | 20 ppm/°C typical (±10V range)                                                       |
| Non-linearity                 | 12 LSB typical (±10V range)                                                          |
| Exciter output                | 10Vdc ± 2%, 40mA max total of all exciter outputs per terminal block                 |



Shown without door

### A8 Pin-out

### Terminal Block 1 (TB1)

| Description                | Pin     |    |    | Description |                  |
|----------------------------|---------|----|----|-------------|------------------|
| Input 0 10V Exciter output | 10V Exc | 1  | 2  | In0+V       | Input 0+ Voltage |
| Input 0 Common             | Cmn     | 3  | 4  | In0+mA      | Input 0+ Current |
| Input 0 Shield connection  | Case    | 5  | 6  | In0-        | Input 0-         |
| _                          | 10V Exc | 7  | 8  | In1+V       |                  |
| Input 1                    | Cmn     | 9  | 10 | In1+mA      | Input 1          |
| _                          | Case    | 11 | 12 | In1-        | _                |
| _                          | 10V Exc | 13 | 14 | In2+V       |                  |
| Input 2                    | Cmn     | 15 | 16 | In2+mA      | Input 2          |
| _                          | Case    | 17 | 18 | In2-        | _                |
|                            | 10V Exc | 19 | 20 | In3+V       | _                |
| Input 3                    | Cmn     | 21 | 22 | In3+mA      | Input 3          |
| _                          | Case    | 23 | 24 | In3-        | _                |

### Terminal Block 2 (TB2)

| Description | Pin     |    |    | Description |              |
|-------------|---------|----|----|-------------|--------------|
|             | 10V Exc | 1  | 2  | In4+V       |              |
| Input 4     | Cmn     | 3  | 4  | In4+mA      | Input 4      |
|             | Case    | 5  | 6  | In4-        | <del>_</del> |
|             | 10V Exc | 7  | 8  | In5+V       |              |
| Input 5     | Cmn     | 9  | 10 | In5+mA      | Input 5      |
|             | Case    | 11 | 12 | In5-        | <del>_</del> |
|             | 10V Exc | 13 | 14 | In6+V       |              |
| Input 6     | Cmn     | 15 | 16 | In6+mA      | Input 6      |
|             | Case    | 17 | 18 | In6-        | _            |
|             | 10V Exc | 19 | 20 | In7+V       |              |
| Input 7     | Cmn     | 21 | 22 | In7+mA      | Input 7      |
|             | Case    | 23 | 24 | In7-        |              |

### **Connection Notes:**

When connecting a voltage signal, use the In+V, In-, and Cmn pins. Do not connect In+mA.

When connecting a current signal, use the In+mA, In-, and Cmn pins. Do not connect In+V.

The Cmn pins must be connected to transducer commons. See wiring diagrams in RMCTools help.

Inputs 0-7 are isolated as a single group. There is no isolation between inputs.

Exciter outputs are +10Vdc referenced to Cmn. Maximum current of 40mA total of all exciter outputs per terminal block.

### **Terminal Blocks:**

The unpluggable terminal blocks include springcage terminals. User-supplied ferrules provide for push-in connections.

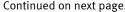
| Stranded Wire and Ferrule Size |                            |  |  |  |
|--------------------------------|----------------------------|--|--|--|
| Conductor cross section        | 24 – 16 AWG                |  |  |  |
|                                | $0.2 - 1.5 \text{ mm}^2$   |  |  |  |
| Conductor cross section,       | $0.25 - 1.5 \text{ mm}^2$  |  |  |  |
| ferrule no plastic sleeve      |                            |  |  |  |
| Conductor cross section,       | $0.25 - 0.75 \text{ mm}^2$ |  |  |  |
| ferrule with plastic sleeve    |                            |  |  |  |
| Stripping Length               | 10 mm                      |  |  |  |
| Ferrule Length                 | 10 – 12 mm                 |  |  |  |

# I/O Module: S8

### 8 SSI or MDT Inputs, support one quadrature input

The S8 module provides eight inputs, individually software selectable as SSI, or as magnetostrictive Start/Stop or PWM inputs.

When configured as SSI, an S8 input acts as a standard SSI input that can receive data from an SSI device, such as a position sensor. Optionally, one SSI monitor input can be configured in software, using inputs 6 and 7 on the S8 module. This SSI monitor input monitors data that is being transferred between a separate SSI input and an SSI device.


One RS-422 quadrature input (A+, A-, B+, B-) may be configured in software, using inputs 6 and 7 on the S8 module.

The S8 module interfaces with both linear sensors and rotary encoders. One LED per channel indicates the state of the respective input.

### **S8 Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| SSI Interface              |                                                                                         |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| Data input                 | RS-422 differential                                                                     |  |  |  |  |
| Clock output               | RS-422 differential                                                                     |  |  |  |  |
| Termination                | Software selectable data input impedance: $110\Omega$ or $>200$ k $\Omega$              |  |  |  |  |
| Clock frequency            | User-selectable, 100kHz to 2500kHz                                                      |  |  |  |  |
| Cable length maximum       | Transducer dependent (approx. 3-2100 ft)                                                |  |  |  |  |
| Resolution                 | Transducer dependent (up to 0.1 µm for magnetostrictive LDTs)                           |  |  |  |  |
| Count encoding             | Binary or Gray Code                                                                     |  |  |  |  |
| Data bits                  | 8 to 32-bits                                                                            |  |  |  |  |
| Bit masking                | High or low bits may be masked                                                          |  |  |  |  |
| Additional Settings        | Selectable overflow modes to conform to various SSI transducers Wire break detection    |  |  |  |  |
| Start/Stop and PWM Interfa | ice                                                                                     |  |  |  |  |
| Transducer interface types | MDT with Start/Stop or PWM (Pulse Width Modulated) feedback                             |  |  |  |  |
| Interrogation output       | RS-422 differential (transducer must be configured for external interrogation)          |  |  |  |  |
| Return input               | RS-422 differential                                                                     |  |  |  |  |
| Resolution                 | 0.0005 in. with one recirculation                                                       |  |  |  |  |
| Count rate                 | 240MHz                                                                                  |  |  |  |  |
| Recirculations             | Supports multiple recirculations only for PWM transducers with internal recirculations. |  |  |  |  |
| Maximum transducer length  | 440 in. at 4 ms (loop-time dependent)                                                   |  |  |  |  |
| Quadrature Interface       |                                                                                         |  |  |  |  |
| Input                      | 5V differential (RS-422) receiver for A+, A-, B+, B                                     |  |  |  |  |
| Connection                 | Uses the following pins:                                                                |  |  |  |  |
|                            | A+: Input 6 Ret/Dat+                                                                    |  |  |  |  |
|                            | A-: Input 6 Ret/Dat-                                                                    |  |  |  |  |
|                            | B+: Input 7 Ret/Dat+                                                                    |  |  |  |  |
|                            | B-: Input 7 Ret/Dat-                                                                    |  |  |  |  |
| Termination                | Software selectable data input impedance: $110\Omega$ or $>200$ k $\Omega$              |  |  |  |  |
| Max Encoder Frequency      | 8,000,000 quadrature counts/second                                                      |  |  |  |  |
| Continued on next page.    |                                                                                         |  |  |  |  |





Shown without door

# RMC200

### S8 Pin-out

### Terminal Block 1 (TB1)

| Description                    |           | Р  | in |           | Description              |
|--------------------------------|-----------|----|----|-----------|--------------------------|
| Input 0 Interrogate+ or Clock+ | Int/Clk0+ | 1  | 2  | Ret/Dat0+ | Input 0 Return+ or Data+ |
| Input 0 Interrogate- or Clock- | Int/Clk0- | 3  | 4  | Ret/Dat0- | Input 0 Return- or Data- |
| Input 0 Shield connection      | Case      | 5  | 6  | Cmn       | Input 0 Common           |
|                                | Int/Clk1+ | 7  | 8  | Ret/Dat1+ | _                        |
| Input 1                        | Int/Clk1- | 9  | 10 | Ret/Dat1- | Input 1                  |
|                                | Case      | 11 | 12 | Cmn       |                          |
|                                | Int/Clk2+ | 13 | 14 | Ret/Dat2+ |                          |
| Input 2                        | Int/Clk2- | 15 | 16 | Ret/Dat2- | Input 2                  |
|                                | Case      | 17 | 18 | Cmn       |                          |
| Input 3                        | Int/Clk3+ | 19 | 20 | Ret/Dat3+ |                          |
|                                | Int/Clk3- | 21 | 22 | Ret/Dat3- | Input 3                  |
|                                | Case      | 23 | 24 | Cmn       |                          |

### Terminal Block 2 (TB2)

| Description |           | Р  | in |           | Description |
|-------------|-----------|----|----|-----------|-------------|
|             | Int/Clk4+ | 1  | 2  | Ret/Dat4+ |             |
| Input 4     | Int/Clk4- | 3  | 4  | Ret/Dat4- | Input 4     |
|             | Case      | 5  | 6  | Cmn       |             |
|             | Int/Clk5+ | 7  | 8  | Ret/Dat5+ | _           |
| Input 5     | Int/Clk5- | 9  | 10 | Ret/Dat5- | Input 5     |
|             | Case      | 11 | 12 | Cmn       |             |
|             | Int/Clk6+ | 13 | 14 | Ret/Dat6+ | _           |
| Input 6     | Int/Clk6- | 15 | 16 | Ret/Dat6- | Input 6     |
|             | Case      | 17 | 18 | Cmn       |             |
|             | Int/Clk7+ | 19 | 20 | Ret/Dat7+ |             |
| Input 7     | Int/Clk7- | 21 | 22 | Ret/Dat7- | Input 7     |
|             | Case      | 23 | 24 | Cmn       |             |

| Stranded Wire and Ferrule Size |                             |
|--------------------------------|-----------------------------|
| Conductor cross section        | 24 – 16 AWG                 |
|                                | $0.2 - 1.5 \text{ mm}^2$    |
| Conductor cross section,       | 0.25 – 1.5 mm <sup>2</sup>  |
| ferrule no plastic sleeve      |                             |
| Conductor cross section,       | 0.25 - 0.75 mm <sup>2</sup> |
| ferrule with plastic sleeve    |                             |
| Stripping Length               | 10 mm                       |
| Ferrule Length                 | 10 – 12 mm                  |

### **Connection Notes:**

For SSI:

Int/Clk = Clock Ret/Dat = Data

For SSI Monitor Mode:

 $\begin{array}{lll} Ret/Dat6\pm &= Data \ In \pm \\ Int/Clk6\pm &= unused \\ Ret/Dat7\pm &= Clock \ In \pm \\ Int/Clk7\pm &= unused \end{array}$ 

For Magnetostrictive Start/Stop or PWM:

Int/Clk = Interrogate Ret/Dat = Return

For Quadrature:

 $Ret/Dat6\pm = A\pm Int/Clk6\pm = unused$  $Ret/Dat7\pm = B\pm Int/Clk7\pm = unused$ 

The Cmn pins must be connected to transducer commons.

Inputs 0-7 are isolated as a single group. There is no isolation between inputs.

For best noise immunity, use shielded, twisted-pair wires and connect Cmn to transducer common with separate wire.

### Terminal Blocks:

The unpluggable terminal blocks include spring-cage terminals. User-supplied ferrules provide for push-in connections.

# I/O Module: Q4

### 4 Quadrature Encoder Inputs

The Q4 module provides four quadrature (A, B, Z) inputs with one home input and one registration input per quadrature input. One LED per channel indicates the state of the respective input.

Each A quad B input is individually software-configurable as one of the following input types:

- RS-422 differential receiver
- ▲ Single-ended TTL-level input
- ▲ Differential HTL (High Threshold Logic), up to 24Vdc signals
- ▲ Single-ended HTL (High Threshold Logic), up to 24Vdc signals

Each Z (index) input is individually software-configurable as one of the above input types, or a DI (discrete input) type, to support an index input that may be external to the encoder.

Termination is software-selectable for the A and B inputs, and separately for the Z inputs.

For new machine designs, Delta Motion recommends an RS-422 line driver output for quadrature encoders, as it provides the highest speed and very good noise immunity. The TTL and HTL input types are intended for retrofit applications where an existing encoder cannot easily be changed to RS-422.

### **Q4 Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| Quadrature Inputs      |                                                      |
|------------------------|------------------------------------------------------|
| A and B Input Types,   | RS-422 (5V differential receiver for A+, A-, B+, B-) |
| software selectable    | HTL differential (A+, A-, B+, B-)                    |
|                        | HTL single-ended 12V (A, B)                          |
|                        | HTL single-ended 24V (A, B)                          |
|                        | TTL single-ended (A, B)                              |
| Z Input Types,         | RS-422 (Z+, Z-)                                      |
| software selectable    | HTL differential (Z+, Z-)                            |
|                        | HTL single-ended 12V (Z)                             |
|                        | HTL single-ended 24V (Z)                             |
|                        | TTL single-ended (Z)                                 |
| <del></del>            | DI (discrete input) (Z)                              |
| Termination            | Software selectable for A and B or for Z.            |
|                        | Input impedance: 115Ω or >200kΩ                      |
| Home Inputs            |                                                      |
| Input Types,           | TTL single-ended                                     |
| software selectable    | DI (discrete input)                                  |
| RS-422 Input           |                                                      |
| Max Count Rate         | 12,000,000 counts per second                         |
| Min Edge Alignment     | 45 ns time between A edge and B edge                 |
| Input Threshold        | +/-200mV max/min                                     |
| Input Hysteresis       | 230mV typical                                        |
| HTL Differential Input |                                                      |
| Max Count Rate         | 2,000,000 counts per second                          |
| Min Edge Alignment     | 60 ns time between A edge and B edge                 |
| Input Threshold        | +/-900mV max/min                                     |
| Input Hysteresis       | 1V typical                                           |
|                        |                                                      |

Continued on next page.



Shown without door

### Q4 Specifications (continued)

| HTL Single-ended 12V Inpu |                                                             |
|---------------------------|-------------------------------------------------------------|
| Max Count Rate            | 1,000,000 counts per second                                 |
| Min Edge Alignment        | 71 ns time between A edge and B edge                        |
| Input Threshold           | 6V to 8V                                                    |
| Input Hysteresis          | 270mV typical                                               |
| Max Input Current         | 460μΑ                                                       |
| Max Propagation Delay     | 300 ns                                                      |
| HTL Single-ended 24V Inpu | t                                                           |
| Max Count Rate            | 1,000,000 counts per second                                 |
| Min Edge Alignment        | 71 ns time between A edge and B edge                        |
| Input Threshold           | 11V to 13V                                                  |
| Input Hysteresis          | 270mV typical                                               |
| Max Input Current         | 460μΑ                                                       |
| Max Propagation Delay     | 300 ns                                                      |
| TTL Single-ended Input    |                                                             |
| Max Count Rate            | 1,000,000 counts per second                                 |
| Min Edge Alignment        | 95 ns time between A edge and B edge                        |
| Input Threshold           | 0.8V to 2.0V                                                |
| Input Hysteresis          | 530mV typical                                               |
| DI Input                  |                                                             |
| Input Threshold           | 5.5V to 8V                                                  |
| Input Hysteresis          | 1.2V typical                                                |
| Max Input Current         | 3.3mA                                                       |
| Max Propagation Delay     | 300 ns                                                      |
| Registration Inputs       |                                                             |
| Input Characteristics     | 5 or 12-24Vdc (software selectable)                         |
| Input "High" range        | 5Vdc input: 3.5 to 5.5Vdc, 7.5mA max                        |
|                           | 12-24Vdc input: 9 to 26.4Vdc, 7mA max                       |
| Input "Low" range         | 5 Vdc input: 0 to 1.7Vdc, <1mA                              |
| ·                         | 12-24Vdc input: 0 to 5Vdc, <1mA                             |
| Maximum propagation delay | Off to On:                                                  |
|                           | 5Vdc input: 0.3 µs                                          |
|                           | 12-24Vdc input: 0.3 μs<br>On to Off:                        |
|                           | 5Vdc input: 0.3 μs, (1.2 μs, open collector drive, 5V)      |
|                           | 12-24Vdc input: 0.5 μs, (1.2 μs, open collector drive, 3v)  |
| -                         | 12 2 17 35 πηραί. σ.ο μος (11 μος οροπ σοποσίοι απίνος 24ν) |

Continued on next page.

### Q4 Pin-out

### Terminal Block 1 (TB1)

| Description             |       | Р  | in |       | Description             |
|-------------------------|-------|----|----|-------|-------------------------|
| Input 0 Z+              | Z0+   | 1  | 2  | A0+   | Input 0 A+              |
| Input 0 Z-              | Z0-   | 3  | 4  | A0-   | Input 0 A-              |
| Input 0 Home            | Hm0   | 5  | 6  | B0+   | Input 0 B+              |
| Encoder and Home Common | Cmn   | 7  | 8  | B0-   | Input 0 B-              |
| Shield connection       | Case  | 9  | 10 | Cmn   | Encoder and Home Common |
| Input 1 Z+              | Z1+   | 11 | 12 | A1+   | Input 1 A+              |
| Input 1 Z-              | Z1-   | 13 | 14 | A1-   | Input 1 A-              |
| Input 1 Home            | Hm1   | 15 | 16 | B1+   | Input 1 B+              |
| Encoder and Home Common | Cmn   | 17 | 18 | B1-   | Input 1 B-              |
| Shield connection       | Case  | 19 | 20 | Cmn   | Encoder and Home Common |
| Registration 0 Input —  | Reg0+ | 21 | 22 | Reg1+ | — Degistration 1 Input  |
|                         | Reg0- | 23 | 24 | Reg1- | Registration 1 Input    |

### Terminal Block 2 (TB2)

| Description             |       | Р  | in |       | Description             |
|-------------------------|-------|----|----|-------|-------------------------|
| Input 2 Z+              | Z2+   | 1  | 2  | A2+   | Input 2 A+              |
| Input 2 Z-              | Z2-   | 3  | 4  | A2-   | Input 2 A-              |
| Input 2 Home            | Hm2   | 5  | 6  | B2+   | Input 2 B+              |
| Encoder and Home Common | Cmn   | 7  | 8  | B2-   | Input 2 B-              |
| Shield connection       | Case  | 9  | 10 | Cmn   | Encoder and Home Common |
| Input 3 Z+              | Z3+   | 11 | 12 | A3+   | Input 3 A+              |
| Input 3 Z-              | Z3-   | 13 | 14 | A3-   | Input 3 A-              |
| Input 3 Home            | Hm3   | 15 | 16 | B3+   | Input 3 B+              |
| Encoder and Home Common | Cmn   | 17 | 18 | B3-   | Input 3 B-              |
| Shield connection       | Case  | 19 | 20 | Cmn   | Encoder and Home Common |
| Deviatorian Olympia     | Reg2+ | 21 | 22 | Reg3+ | Degistration 2 Input    |
| Registration 2 Input —  | Reg2- | 23 | 24 | Reg3- | Registration 3 Input    |

| Stranded Wire and Ferrule Size |                             |
|--------------------------------|-----------------------------|
| Conductor cross section        | 24 – 16 AWG                 |
|                                | $0.2 - 1.5 \text{ mm}^2$    |
| Conductor cross section,       | $0.25 - 1.5 \text{ mm}^2$   |
| ferrule no plastic sleeve      |                             |
| Conductor cross section,       | 0.25 - 0.75 mm <sup>2</sup> |
| ferrule with plastic sleeve    |                             |
| Stripping Length               | 10 mm                       |
| Ferrule Length                 | 10 – 12 mm                  |

### **Connection Notes:**

The Cmn pins must be connected to the encoder commons.

Inputs 0-3 are isolated as a single group. There is no isolation between inputs.

The Home input uses the same common as the A and B inputs. Therefore, the Home input will not support an active low home signal such as an NPN open collector. The Home input will support a PNP open collector.

For best noise immunity, use shielded, twisted-pair wires and connect Cmn to transducer common with separate wire.

### **Terminal Blocks:**

The unpluggable terminal blocks include spring-cage terminals. User-suppled ferrules provide for push-in connections.

# I/O Module: LC8

### 8 Load Cell Inputs, ±5mV/V, with Sense Input

The LC8 module provides eight load cell inputs with two unpluggable terminal blocks of four inputs each. The LC8 supports sensitivities up to 5mV/V with full Wheatstone bridge configurations. Quarter and half bridges are supported with a customer-supplied bridge completion circuit.

The 6.75V excitation is intended to work with  $350\Omega$  load cells. Load cells with lower resistance are supported, as long as the total excitation current per terminal block does not exceed 80mA.

External customer-supplied excitation voltage may be used as long as the Max Differential Input (±34.25mV) is not exceeded and the input voltage at In+ or In- relative to -Exc is within the Input Voltage Range (0.6V to 6.15V typical).

The LC8 supports 4 wire and 6 wire load cells. Each LC8 load cell input includes a single sense input for wire voltage drop compensation. Therefore, only the negative sense wire on a 6 wire load cell will be connected to the LC8 input. For accurate compensation with a single sense input, the excitation wires should be of the same length and gauge.

One LED per input indicates the state of the respective input.

### LC8 Specifications

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| Inputs                        |                                                                                  |
|-------------------------------|----------------------------------------------------------------------------------|
| Inputs                        | Eight 24-bit load cell inputs                                                    |
| Overvoltage protection        | ±24V, momentary                                                                  |
| Input range                   | ±33.75mV (5mV/V with 6.75V excitation)                                           |
| Max differential input        | ±34.25mV (5.075mV/V with 6.75V excitation)                                       |
| Input voltage range           | In+ or In- relative to -Exc: 0.6V to 6.15V typical                               |
| Input impedance               | 5ΜΩ                                                                              |
| Input step response           | 70% in 2 samples times, 100% in 3 samples times                                  |
| Sampling frequency            | 8kHz max                                                                         |
| Sampling filter               | 150Hz to 2.4kHz, based on sampling frequency                                     |
| Offset drift with temperature | ±40nV/V/°C typical                                                               |
| Gain drift with temperature   | -0.005%/°C (-50 ppm/°C) typical                                                  |
| Non-linearity                 | ±15 ppm of Full Scale Range typical                                              |
| Exciter output                | 6.75Vdc ± 2mV typical. 80mA max total of all exciter outputs per terminal block. |



Shown without door

### LC8 Pin-out

### Terminal Block 1 (TB1)

| Description               |       | Р  | in |      | Description |  |
|---------------------------|-------|----|----|------|-------------|--|
| 6.75V Exciter output      | +ExcA | 1  | 2  | In0+ | Input 0 +   |  |
| Input 0 Exciter -         | -ExcA | 3  | 4  | In0- | Input 0 -   |  |
| Input 0 Shield connection | Case  | 5  | 6  | S0   | Sense -     |  |
|                           | +ExcA | 7  | 8  | ln1+ |             |  |
| Input 1                   | -ExcA | 9  | 10 | ln1- | Input 1     |  |
|                           | Case  | 11 | 12 | S1   |             |  |
|                           | +ExcA | 13 | 14 | In2+ |             |  |
| Input 2                   | -ExcA | 15 | 16 | In2- | Input 2     |  |
|                           | Case  | 17 | 18 | S2   |             |  |
|                           | +ExcA | 19 | 20 | In3+ |             |  |
| Input 3                   | -ExcA | 21 | 22 | In3- | Input 3     |  |
| -<br>-                    | Case  | 23 | 24 | S3   |             |  |

### Terminal Block 2 (TB2)

| Description |       | Р  | in |      | Description |
|-------------|-------|----|----|------|-------------|
|             | +ExcB | 1  | 2  | ln4+ |             |
| Input 4     | -ExcB | 3  | 4  | In4- | Input 4     |
|             | Case  | 5  | 6  | S4   |             |
|             | +ExcB | 7  | 8  | In5+ |             |
| Input 5     | -ExcB | 9  | 10 | In5- | Input 5     |
| •           | Case  | 11 | 12 | S5   |             |
|             | +ExcB | 13 | 14 | In6+ |             |
| Input 6     | -ExcB | 15 | 16 | In6- | Input 6     |
|             | Case  | 17 | 18 | S6   |             |
| _           | +ExcB | 19 | 20 | In7+ |             |
| Input 7     | -ExcB | 21 | 22 | In7- | Input 7     |
|             | Case  | 23 | 24 | S7   |             |

### **Connection Notes:**

Load cell Exciter:

Inputs 0-7 are isolated as a single group. There is no isolation between inputs.

The pins must be wired according to wiring diagrams in the Startup Guide and RMCTools. The Sense - input is optional.

Exciter outputs (+Exc) are 6.75Vdc referenced to -Exc. Maximum current is 80mA total of all exciter outputs per terminal block.

### Terminal Blocks:

The unpluggable terminal blocks include springcage terminals. User-supplied ferrules provide for push-in connections.

| Stranded Wire and Ferrule Size |                            |  |  |  |  |
|--------------------------------|----------------------------|--|--|--|--|
| Conductor cross section        | 24 – 16 AWG                |  |  |  |  |
|                                | $0.2 - 1.5 \text{ mm}^2$   |  |  |  |  |
| Conductor cross section,       | $0.25 - 1.5 \text{ mm}^2$  |  |  |  |  |
| ferrule no plastic sleeve      |                            |  |  |  |  |
| Conductor cross section,       | $0.25 - 0.75 \text{ mm}^2$ |  |  |  |  |
| ferrule with plastic sleeve    |                            |  |  |  |  |
| Stripping Length               | 10 mm                      |  |  |  |  |
| Ferrule Length                 | 10 – 12 mm                 |  |  |  |  |

# I/O Module: CA4

### 4 Analog Outputs, ±10V, 4-20mA, or ±20mA, with Fault Inputs and Enable Outputs

The CA4 module provides four analog outputs specifically designed for control outputs to valves, amplifiers, or drives. The outputs are individually software selectable as ±10V, 4-20mA, or ±20mA for connection to a wide variety of actuators. The CA4 also supports custom ranges within the ±10V and ±20mA ranges, such as 0-10V, 0-5V, 1-5V, etc.

Each analog output has an associated 12-24Vdc Fault Input and a solid state relay Enable Output. The Fault Inputs and Enable Outputs may be dedicated to the respective output, or may be used as general-purpose discrete I/O.

Three LEDs per channel indicate the state of the respective analog output, Enable Output, and Fault Input.

### **CA4 Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| Analog Outputs            |                                                              |
|---------------------------|--------------------------------------------------------------|
| Range                     | Voltage mode: ± 10V @ 15mA (670Ω or greater load)            |
|                           | Current mode: ± 20mA @ 10V (500Ω or lower load)              |
| Tolerance at full output  | Voltage mode: ± 5mV at 10V                                   |
|                           | Current mode: ± 10µA at 20mA                                 |
| Resolution                | 18-bits                                                      |
| Hardware Output Filter    | First-order filter, time constant 100 µsec                   |
| Overload protection       | Continuous short to common                                   |
| Overvoltage protection    | Outputs are protected by clamp diodes                        |
| Enable Output             |                                                              |
| Output type               | Solid State Relay                                            |
| Load types                | DC general use, DC resistance, DC Pilot Duty                 |
| Logic polarity            | User selectable to Active Open or Active Closed              |
| Rated voltage             | max ±30Vdc                                                   |
| Maximum current           | ±75mA                                                        |
| Maximum propagation delay | 2 ms turn-on, 0.5 ms turn-off                                |
| Closed                    | Low impedance (15Ω maximum)                                  |
| Open                      | High impedance (<1µA leakage current at 30V)                 |
| Fault Input               |                                                              |
| Input characteristics     | 12-24Vdc; polarity independent, sinking or sourcing load     |
| Logic polarity            | User selectable to Active Input "High" or Active Input "Low" |
|                           | (Open when module not powered)                               |
| Input "High" range        | 9 to 26.4Vdc (polarity independent),                         |
|                           | 3mA maximum                                                  |
| Input "Low" range         | 0 to 5Vdc (polarity independent), <1 mA                      |
| Maximum propagation delay | 100 μs Off to On                                             |
|                           | 750 μs On to Off (open collector drive)                      |





Shown without door

### **CA4 Pin-out**

### Terminal Block 1 (TB1)

| Description                 |          | Р  | in |          | Description  |
|-----------------------------|----------|----|----|----------|--------------|
| Voltage or current output 0 | CtrlOut0 | 1  | 2  | CtrlOut1 |              |
| Output common               | Cmn      | 3  | 4  | Cmn      | _            |
| Output common               | Cmn      | 5  | 6  | Cmn      |              |
| Shield connection           | Case     | 7  | 8  | Case     | <del>_</del> |
| Enable Output 0+            | EnOut0+  | 9  | 10 | EnOut1+  | Output 1     |
| Enable Output 0-            | EnOut0-  | 11 | 12 | EnOut1-  |              |
| Fault Input 0+              | FltIn0+  | 13 | 14 | FltIn1+  | <del>-</del> |
| Fault Input 0-              | FltIn0-  | 15 | 16 | FltIn1-  | _            |
| Shield connection           | Case     | 17 | 18 | Case     |              |

### Terminal Block 2 (TB2)

| Description |          | Pin      |    |    |          | Description |
|-------------|----------|----------|----|----|----------|-------------|
|             |          | CtrlOut2 | 1  | 2  | CtrlOut3 |             |
|             |          | Cmn      | 3  | 4  | Cmn      | _           |
|             |          | Cmn      | 5  | 6  | Cmn      | _           |
|             |          | Case     | 7  | 8  | Case     | _           |
|             | Output 2 | EnOut2+  | 9  | 10 | EnOut3+  | Output 3    |
|             |          | EnOut2-  | 11 | 12 | EnOut3-  | _           |
|             |          | Fltln2+  | 13 | 14 | Fltln3+  | _           |
|             |          | FltIn2-  | 15 | 16 | FltIn3-  | _           |
|             |          | Case     | 17 | 18 | Case     | _           |

### **Connection Notes:**

The CtrlOut pin is normally ±10V. May be configured to ±20mA or 4-20mA in RMCTools.

Analog outputs 0-3 are isolated as a single group. There is no isolation between outputs.

For best noise immunity, use shielded, twisted-pair wires. When connecting to a differential input, connect CtrlOut and Cmn as a twisted pair to the receiver differential inputs, and also run a separate wire from Cmn to the differential input common.

### Terminal Blocks:

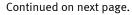
The unpluggable terminal blocks include spring-cage terminals. User-supplied ferrules provide for push-in connections.

| Stranded Wire and Ferrule Size |                             |
|--------------------------------|-----------------------------|
| Conductor cross section        | 24 – 16 AWG                 |
|                                | $0.2 - 1.5 \text{ mm}^2$    |
| Conductor cross section,       | 0.25 - 1.5 mm <sup>2</sup>  |
| ferrule no plastic sleeve      |                             |
| Conductor cross section,       | 0.25 - 0.75 mm <sup>2</sup> |
| ferrule with plastic sleeve    |                             |
| Stripping Length               | 10 mm                       |
| Ferrule Length                 | 10 – 12 mm                  |
|                                |                             |

# I/O Module: CV8

### 8 Analog Outputs, ±10V only, with eight individually-configurable discrete I/O

The CV8 module provides eight analog outputs specifically designed for control outputs to valves, amplifiers, or drives. The ±10V outputs support custom ranges within the ±10V range, such as 0-10V, 0-5V, 1-5V, etc.


The CV8 provides eight discrete I/O points, individually configurable as inputs or outputs. These discrete I/O may be used for general purpose I/O, Fault Inputs, or Enable Outputs.

Each analog output has an associated LED, and each discrete I/O point has an associated LED.

### **CV8 Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| Analog Outputs               |                                                              |
|------------------------------|--------------------------------------------------------------|
| Range                        | ±10V @ 5mA (2000Ω or greater load)                           |
| Tolerance at full output     | ±5mV at 10V                                                  |
| Resolution                   | 18-bits                                                      |
| Hardware Output Filter       | First-order filter, time constant 75 µsec                    |
| Overload protection          | Continuous short to common                                   |
| Overvoltage protection       | Outputs are protected by clamp diodes                        |
| Discrete Outputs (up to 8 p  | er module)                                                   |
| Output type                  | Solid State Relay, individually isolated                     |
| Load types                   | DC general use, DC resistance, DC Pilot Duty                 |
| Logic polarity               | User selectable to Active Open or Active Closed              |
| Rated voltage                | max ±30Vdc                                                   |
| Maximum current              | ±75mA                                                        |
| Maximum propagation delay    | 2 ms turn-on, 0.5 ms turn-off                                |
| Closed                       | Low impedance (15Ω maximum)                                  |
| Open                         | High impedance (<1µA leakage current at 30V)                 |
| Discrete Inputs (up to 8 per | module)                                                      |
| Input characteristics        | 12-24Vdc; polarity independent, individually isolated        |
| Logic polarity               | User selectable to Active Input "High" or Active Input "Low" |
|                              | (Open when module not powered)                               |
| Input "High" range           | 9 to 26.4Vdc (polarity independent),                         |
|                              | 3mA maximum                                                  |
| Input "Low" range            | 0 to 5Vdc (polarity independent), <1mA                       |
| Maximum propagation delay    | ·                                                            |
|                              | 750 μs On to Off (open collector drive)                      |





Shown without door

### CV8 Pin-out

### Terminal Block 1 (TB1)

| Description        |          | Р  | in |          | Description      |
|--------------------|----------|----|----|----------|------------------|
| Voltage output 0   | CtrlOut0 | 1  | 2  | CtrlOut1 |                  |
| Output common      | Cmn      | 3  | 4  | Cmn      | — Output 1       |
| Output common      | Cmn      | 5  | 6  | Cmn      | Output 1         |
| Connection to case | Case     | 7  | 8  | Case     |                  |
| _                  | CtrlOut2 | 9  | 10 | CtrlOut3 |                  |
| Output 2 —         | Cmn      | 11 | 12 | Cmn      | — Output 2       |
| Output 2 —         | Cmn      | 13 | 14 | Cmn      | Output 3         |
|                    | Case     | 15 | 16 | Case     |                  |
| Discrete I/O 0+    | D0+      | 17 | 18 | D1+      | Discrete I/O 1   |
| Discrete I/O 0-    | D0-      | 19 | 20 | D1-      | — Discrete I/O I |
| Diagnote lanut 0   | D2+      | 21 | 22 | D3+      | Discrete I/O 3   |
| Discrete Input 2 - | D2-      | 23 | 24 | D3-      | Discible I/O 3   |

### Terminal Block 2 (TB2)

| Description    | Pin      |    |    |          | Description      |
|----------------|----------|----|----|----------|------------------|
|                | CtrlOut4 | 1  | 2  | CtrlOut5 |                  |
| Output 4       | Cmn      | 3  | 4  | Cmn      | — Output F       |
| Output 4       | Cmn      | 5  | 6  | Cmn      | Output 5         |
|                | Case     | 7  | 8  | Case     |                  |
|                | CtrlOut6 | 9  | 10 | CtrlOut7 |                  |
| Output 6       | Cmn      | 11 | 12 | Cmn      | — Output 7       |
| Output 6       | Cmn      | 13 | 14 | Cmn      | Output 7         |
|                | Case     | 15 | 16 | Case     |                  |
| Discrete I/O 4 | D4+      | 17 | 18 | D5+      | Discrete I/O 5   |
| Discrete I/O 4 | D4-      | 19 | 20 | D5-      | Disciete I/O 5   |
| Discrete I/O 6 | D6+      | 21 | 22 | D7+      | Discrete I/O 7   |
| Discrete 1/O 6 | D6-      | 23 | 24 | D7-      | — Discrete I/O I |

| Stranded Wire and Ferrule Size |                            |
|--------------------------------|----------------------------|
| Conductor cross section        | 24 – 16 AWG                |
|                                | $0.2 - 1.5 \text{ mm}^2$   |
| Conductor cross section,       | 0.25 – 1.5 mm <sup>2</sup> |
| ferrule no plastic sleeve      |                            |
| Conductor cross section,       | $0.25 - 0.75 \text{ mm}^2$ |
| ferrule with plastic sleeve    |                            |
| Stripping Length               | 10 mm                      |
| Ferrule Length                 | 10 – 12 mm                 |
|                                |                            |

### **Connection Notes:**

Analog outputs 0-7 are isolated as a single group. There is no isolation between outputs.

For best noise immunity, use shielded, twisted-pair wires. When connecting to a differential input, connect CtrlOut and Cmn as a twisted pair to the receiver differential inputs, and also run a separate wire from Cmn to the differential input common.

### Terminal Blocks:

The unpluggable terminal blocks include spring-cage terminals. User-supplied ferrules provide for push-in connections.

# I/O Module: D24

### 24 Discrete I/O

The D24 discrete I/O module contains 20 configurable discrete I/O points for 24Vdc and 4 high-speed discrete inputs for either 5 or 24 Vdc signals.

The four high-speed inputs of the D24 module are software configurable as general-purpose inputs, or quadrature or pulse counter inputs. The D24 quadrature input supports single-ended encoders and encoders with complements, and up to 24V signals. The D24 quadrature input is not designed for RS-422 drivers but will function at a reduced input frequency.

For new machine designs, Delta Motion always recommends an RS-422 line driver output for quadrature encoders, as it provides high speed and very good noise immunity. RS-422 quadrature signals are best supported by the Q4 module and on the S8 and U14 modules (only one input on the S8). The D24 quadrature is intended for retrofit applications where an existing encoder cannot easily be changed to RS-422.

### 20 general-purpose discrete I/O points:

- ▲ 24Vdc signals
- ▲ Individually software-configurable as an input or output (solid state relay).
- ▲ Arranged in 3 isolated groups of 8, 8, and 4 I/O points.

### 4 high-speed inputs:

- ▲ 5 or 24Vdc signals (separate pin for 5 or 12-24Vdc connection)
- ▲ Software configurable as general-purpose or specific high-speed functionality
- Quadrature encoder, software-configurable as one of the following options:
  - ▲ 1 single-ended quadrature input with A, B, and Z, using inputs 20-22.
  - ▲ 1 quadrature input with complements (A+, A-, B+, B-) and wire break detection, using inputs 20-23.
  - ▲ 2 single-ended quadrature inputs with A and B, using inputs 20-23.
- ▲ Pulse counter, using inputs 20 and 22, software configurable as rising edge, falling edge, or rising and falling edge counter.
- ▲ Supports Event Timers high-speed timing between input events



Shown without door

### **D24 Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| General Purpose Inputs    |                                                           |
|---------------------------|-----------------------------------------------------------|
| Input Characteristics     | 12-24Vdc; polarity independent, sinking, or sourcing load |
| Logic polarity            | True High                                                 |
| Input "High" range        | 9 to 26.4Vdc (polarity independent),                      |
|                           | 3 mA maximum                                              |
| Input "Low" range         | 0 to 5Vdc (polarity independent), <1mA                    |
| Maximum propagation delay | 100 μsec, (750 μsec, open collector "Off")                |
| General Purpose Outputs   |                                                           |
| Outputs                   | Solid State Relay                                         |
| Load types                | DC general use, DC resistance, DC Pilot Duty              |
| Maximum voltage           | max ±30Vdc                                                |
| Maximum current           | ±75mA                                                     |
| Maximum propagation delay | 2 ms turn-on, 0.5 ms turn-off                             |
| Logic 1 (True, On)        | Low impedance (15Ω maximum)                               |
| Logic 0 (False, Off)      | High impedance (<1µA leakage current at 30V)              |

Continued on next page.

### D24 Specifications (continued)

See also General Specifications on page 5.

| High-Speed Inputs         |                                                            |
|---------------------------|------------------------------------------------------------|
| Input Characteristics     | 5 or 12-24Vdc (separate pins for 5 or 12-24Vdc)            |
| Logic polarity            | True High                                                  |
| Input "High" range        | 5Vdc input: 3.5 to 5.5Vdc, 7.5mA max                       |
|                           | 12-24Vdc input: 9 to 26.4Vdc, 7mA max                      |
| Input "Low" range         | 5Vdc input: 0 to 1.7Vdc, <1mA                              |
|                           | 12-24Vdc input: 0 to 5Vdc, <1mA                            |
| Maximum propagation delay | Off to On:                                                 |
|                           | 5Vdc input: 0.3 μs                                         |
|                           | 12-24Vdc input: 0.3 μs                                     |
|                           | On to Off:                                                 |
|                           | 5Vdc input: 0.3 μs, (1.2 μs, open collector drive, 5V)     |
|                           | 12-24Vdc input: 0.5 μs, (11 μs, open collector drive, 24V) |
| Maximum input frequency   | 5Vdc input: 1,000kHz, (400kHz, open collector drive, 5V)   |
|                           | 12-24Vdc input: 500kHz, (25kHz, open collector drive, 24V) |

### D24 Pin-out

### Terminal Block 1 (TB1)

| Description                |         | Р  | in |         | Description                |
|----------------------------|---------|----|----|---------|----------------------------|
| Shield connection          | Case    | 1  | 2  | Case    | Shield connection          |
| Common for Group A outputs | OutCmnA | 3  | 4  | OutCmnB | Common for Group B outputs |
| Group A, DI/O point 0      | D0      | 5  | 6  | D8      | Group B, DI/O point 8      |
| Group A, DI/O point 1      | D1      | 7  | 8  | D9      | Group B, DI/O point 9      |
| Group A, DI/O point 2      | D2      | 9  | 10 | D10     | Group B, DI/O point 10     |
| Group A, DI/O point 3      | D3      | 11 | 12 | D11     | Group B, DI/O point 11     |
| Group A, DI/O point 4      | D4      | 13 | 14 | D12     | Group B, DI/O point 12     |
| Group A, DI/O point 5      | D5      | 15 | 16 | D13     | Group B, DI/O point 13     |
| Group A, DI/O point 6      | D6      | 17 | 18 | D14     | Group B, DI/O point 14     |
| Group A, DI/O point 7      | D7      | 19 | 20 | D15     | Group B, DI/O point 15     |
| Common for Group A inputs  | InCmnA  | 21 | 22 | InCmnB  | Common for Group B inputs  |
| Shield connection          | Case    | 23 | 24 | Case    | Shield connection          |

### **Terminal Blocks:**

The unpluggable terminal blocks include spring-cage terminals. User-supplied ferrules provide for push-in connections.

| Stranded Wire and Ferrule Size |                            |  |  |
|--------------------------------|----------------------------|--|--|
| Conductor cross section        | 24 – 16 AWG                |  |  |
|                                | $0.2 - 1.5 \text{ mm}^2$   |  |  |
| Conductor cross section,       | $0.25 - 1.5 \text{ mm}^2$  |  |  |
| ferrule no plastic sleeve      |                            |  |  |
| Conductor cross section,       | $0.25 - 0.75 \text{ mm}^2$ |  |  |
| ferrule with plastic sleeve    |                            |  |  |
| Stripping Length               | 10 mm                      |  |  |
| Ferrule Length                 | 10 – 12 mm                 |  |  |

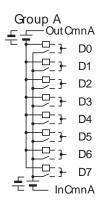
### Terminal Block 2 (TB2)

| Description Pin            |         | Description |    |          |                           |
|----------------------------|---------|-------------|----|----------|---------------------------|
| Shield connection          | Case    | 1           | 2  | Din20+   | Input 20+ for 12-24Vdc    |
| Shield connection          | Case    | 3           | 4  | Din20+5V | Input 20+ for 5Vdc        |
| Shield connection          | Case    | 5           | 6  | Din20-   | Input 20- for all signals |
| Common for Group C outputs | OutCmnC | 7           | 8  | Din21+   |                           |
| Group C, DI/O point 16     | D16     | 9           | 10 | Din21+5V | Input 21                  |
| Group C, DI/O point 17     | D17     | 11          | 12 | Din21-   |                           |
| Group C, DI/O point 18     | D18     | 13          | 14 | Din22+   |                           |
| Group C, DI/O point 19     | D19     | 15          | 16 | Din22+5V | Input 22                  |
| Common for Group C inputs  | InCmnC  | 17          | 18 | Din22-   |                           |
| Shield connection          | Case    | 19          | 20 | Din23+   |                           |
| Shield connection          | Case    | 21          | 22 | Din23+5V | Input 23                  |
| Shield connection          | Case    | 23          | 24 | Din23-   | _                         |
|                            | •       |             |    |          | •                         |

Continued on next page.

### D24 Configurability and Connection Notes

### I/O Points 0-19:


Divided into groups A, B, and C. Each group contains I/O points with a shared output common and input common. Each individual point is configured in the RMCTools software to be an input or an output.

All inputs in a group share the same common, and all outputs in a group share the same common.

Within each group, all inputs must be the same polarity, and all outputs must be the same polarity, but inputs need not be the same polarity as outputs, that is, outputs can switch high side or low side, and inputs can be active high or low.

### Inputs 20-23:

Inputs only, individually isolated. For 12-24Vdc inputs, wire to Din+ and Din-. For 5Vdc inputs, wire to Din+5V and Din-. Do not wire both Din+ and Din+5V on the same input.



# I/O Module: U14

4 Analog Inputs (±10V or 4-20mA), 2 Analog Outputs (±10V, 4-20mA, or ±20mA), 4 Discrete I/O, 2 High-Speed Channels for SSI, MDT or Quadrature Encoder Inputs, each with an additional high-speed discrete input

The U14 module provides multiple types of I/O to complement the RMC200's other high-density modules. For example, use the U14 together with an 8-input module and 8-output module to obtain a controller with 10 axes of motion without purchasing extra modules with many unused inputs.

### The U14 provides:

### ▲ Four analog inputs

For ±10V or 4-20mA signals. 18-bit resolution ADCs with oversampling for increased effective resolution and noise reduction. One LED per channel indicates the state of the respective input.

### **▲** Two analog outputs

18-bit analog outputs designed for control outputs to valves, amplifiers, or drives. The outputs are individually software selectable as ±10V, 4-20mA, or ±20mA for connection to a wide variety of actuators. The U14 also supports custom ranges within the ±10V and ±20mA ranges, such as 0-10V, 0-5V, 1-5V, etc. One LED per channel indicates the state of the respective analog output.

### ▲ 4 configurable discrete I/O points

For 24Vdc. Each I/O point is configurable as an input or output and individually isolated. One LED per I/O point indicates the status of the input or output.

### ▲ Two channels of high-speed I/O

Individually software selectable as SSI inputs, magnetostrictive Start/Stop or PWM inputs, or as quadrature encoder inputs. Each channel has an associated registration/Z (index) input. One LED per channel indicates the state of the respective high-speed channel, and another LED indicates the state of each Reg/Z input.

- ▲ SSI: A U14 high-speed channel can be configured as:
  - **SSI input**: receives data from an SSI device, such as a position sensor.
  - SSI monitor input: monitors data that is being transferred between a separate SSI input and an SSI device.
  - Echo mode: Channel 1 outputs as an SSI device the data received by channel 0 configured as an SSI input.

### ▲ Magnetostrictive Start/Stop or PWM inputs (MDT):

Requires RS-422 signals and supports multiple recirculations.

### ▲ Quadrature encoder input:

Each A quad B input is individually software-configurable as one of the following input types:

- RS-422 differential receiver
- Single-ended TTL-level input
- Differential HTL (High Threshold Logic), up to 24Vdc signals
- Single-ended HTL (High Threshold Logic), up to 24Vdc signals

For new machine designs, Delta Motion recommends an RS-422 line driver output for quadrature encoders, as it provides the highest speed and very good noise immunity. TTL and HTL are intended for retrofit applications where an existing encoder cannot easily be changed to RS-422.

### ▲ Two Registration/Z (Index) inputs

Each Z (index) input is individually software-configurable as one of the above input types, or a DI (discrete input) type, to support an index input that may be external to the encoder.

See U14 specifications on the next page.



Shown without door

p.31

### **U14 Specifications**

See also General Specifications on page 5 and Power Consumption Specifications on page 6.

| Analog Inputs                 |                                                                                                   |
|-------------------------------|---------------------------------------------------------------------------------------------------|
| Inputs                        | Four 18-bit differential (higher resolution obtained by oversampling)                             |
| Overvoltage protection        | ±24V, momentary                                                                                   |
| Input ranges                  | ±10V, 4-20mA, ±20mA (each input independently configurable)                                       |
| Max differential ranges       | Voltage: -10.2V to +10.2V                                                                         |
|                               | Current: -20mA to +20mA (continuous), -25mA to +25mA (peak)                                       |
| Max input voltage ranges      | In+ or In- relative to Cmn: -14V to +14V typical                                                  |
| Input impedance               | Voltage input: 1MΩ                                                                                |
|                               | Current input: $165\Omega$                                                                        |
| Input filter slew rate        | 25V/ms                                                                                            |
| Sampling frequency            | 200kHz internal sampling. Provides one filtered sample per control loop (e.g. 1 msec) to CPU.     |
| Sampling filter               | 250Hz – 4kHz, user-selectable internal low-pass sampling filter.                                  |
| Offset drift with temperature | 0.2 LSB/°C typical (±10V range)                                                                   |
| Gain drift with temperature   | 20 ppm/°C typical (±10V range)                                                                    |
| Non-linearity                 | 12 LSB (counts) typical (±10V range)                                                              |
| Analog Outputs                |                                                                                                   |
| Range                         | Voltage mode: ± 10V @ 15mA (670Ω or greater load) Current mode: ± 20mA @ 10V (500Ω or lower load) |
| Tolerance at full output      | Voltage mode: ± 5mV at 10V                                                                        |
|                               | Current mode: ± 10µA at 20mA                                                                      |
| Resolution                    | 18-bit                                                                                            |
| Hardware Output Filter        | First-order filter, time constant 100 µsec                                                        |
| Overload protection           | Continuous short to common                                                                        |
| Overvoltage protection        | Outputs are protected by clamp diodes                                                             |
| SSI Interface                 |                                                                                                   |
| Data input                    | RS-422 differential                                                                               |
| Clock output                  | RS-422 differential                                                                               |
| Termination                   | Software selectable data input impedance: $110\Omega$ or $>200k\Omega$                            |
| Clock frequency               | User-selectable, 100kHz to 2500kHz                                                                |
| Cable length maximum          | Transducer dependent (approx. 3-2100 ft)                                                          |
| Resolution                    | Transducer dependent (up to 0.1 µm for magnetostrictive LDTs)                                     |
| Count encoding                | Binary or Gray Code                                                                               |
| Data bits                     | 8 to 32-bits                                                                                      |
| Bit masking                   | A selectable number of high or low bits may be masked                                             |
| Additional Settings           | Selectable overflow modes to conform to various SSI transducers. Wire break detection             |
| Start/Stop and PWM Interfa    | ce                                                                                                |
| Transducer interface types    | MDT with Start/Stop or PWM (Pulse Width Modulated) feedback                                       |
| Interrogation output          | RS-422 differential (transducer must be configured for external interrogation)                    |
| Return input                  | RS-422 differential                                                                               |
| Resolution                    | 0.0005 in. with one recirculation                                                                 |
| Count rate                    | 240MHz                                                                                            |
| Recirculations                | Supports multiple recirculations only for PWM transducers with internal recirculations.           |
| Maximum transducer length     | 440 in. at 4 ms (loop-time dependent)                                                             |
| Continued on next page.       |                                                                                                   |

| Delta Motion | Battle Ground, WA USA | +1 360.254.8688 | deltamotion.com |

# **RMC200**

# U14 Specifications (continued)

| Quadrature Inputs          |                                                                 |
|----------------------------|-----------------------------------------------------------------|
| A and B Input Types,       | RS-422 (5V differential receiver for A+, A-, B+, B-)            |
| software selectable        | HTL differential (A+, A-, B+, B-)                               |
|                            | HTL single-ended 12V (A, B)                                     |
|                            | HTL single-ended 24V (A, B)                                     |
|                            | TTL single-ended (A, B)                                         |
| Reg/Z Input Types,         | RS-422 (Reg/Z+, Reg/Z-)                                         |
| software selectable        | HTL differential (Reg/Z+, Reg/Z-)                               |
|                            | HTL single-ended 12V (Reg/Z) HTL single-ended 24V (Reg/Z)       |
|                            | TTL single-ended (Reg/Z)                                        |
|                            | DI (discrete input) (Reg/Z)                                     |
| Termination                | Software selectable in RS-422 and TTL modes for A and B and for |
|                            | Reg/Z. Input impedance: $115\Omega$ or $>200$ k $\Omega$        |
| Absolute Max Input Voltage | 26.2V                                                           |
| Absolute Min Input Voltage | -26.2V                                                          |
| Fault Voltage              | TTL, RS-422: Input voltage < -16V or > 16V (typical)            |
|                            | HTL, DI: Input voltage < -16V (typical)                         |
| RS-422 Input               | 0.000.000                                                       |
| Max Count Rate             | 8,000,000 counts per second                                     |
| Min Edge Alignment         | 55 ns time between A edge and B edge                            |
| Input Threshold            | +/-460mV max/min                                                |
| Input Hysteresis           | 230mV typical                                                   |
| Maximum Propagation Delay  | RS-422: 25 ns                                                   |
| HTL Differential Input     |                                                                 |
| Max Count Rate             | 2,000,000 counts per second                                     |
| Min Edge Alignment         | 70 ns time between A edge and B edge                            |
| Input Threshold            | +/-2V max/min                                                   |
| Input Hysteresis           | 1V typical                                                      |
| HTL Single-ended 12V Inpu  |                                                                 |
| Max Count Rate             | 1,000,000 counts per second                                     |
| Min Edge Alignment         | 80 ns time between A edge and B edge                            |
| Input Threshold            | 6V to 8V                                                        |
| Input Hysteresis           | 270mV typical                                                   |
| Max Input Current          | 460μΑ                                                           |
| Max Propagation Delay      | 300 ns                                                          |
| HTL Single-ended 24V Inpu  |                                                                 |
| Max Count Rate             | 1,000,000 counts per second                                     |
| Min Edge Alignment         | 80 ns time between A edge and B edge                            |
| Input Threshold            | 11V to 13V                                                      |
| Input Hysteresis           | 270mV typical                                                   |
| Max Input Current          | 460μΑ                                                           |
| Max Propagation Delay      | 300 ns                                                          |
| TTL Single-ended Input     | 4 000 000                                                       |
| Max Count Rate             | 1,000,000 counts per second                                     |
| Min Edge Alignment         | 105 ns time between A edge and B edge                           |
| Input Threshold            | 0.8V to 2.0V                                                    |
| Input Hysteresis           | 530mV typical                                                   |
| DI Input                   | E 5\/ to 0\/                                                    |
| Input Threshold            | 5.5V to 8V                                                      |
| Input Hysteresis           | 1.2V typical                                                    |
| Max Input Current          | 3.3mA                                                           |
| Max Propagation Delay      | 300 ns                                                          |
| Continued on next page.    |                                                                 |

### **U14 Specifications (continued)**

| General Purpose Discrete Inputs  |                                                          |  |  |  |
|----------------------------------|----------------------------------------------------------|--|--|--|
| Input Characteristics            | 12-24Vdc; polarity independent, sinking or sourcing load |  |  |  |
| Logic polarity                   | True High                                                |  |  |  |
| Input "High" range               | 9 to 26.4Vdc (polarity independent), 3 mA maximum        |  |  |  |
| Input "Low" range                | 0 to 5Vdc (polarity independent), <1mA                   |  |  |  |
| Maximum propagation delay        | 100 μsec, (750 μsec, open collector "Off")               |  |  |  |
| General Purpose Discrete Outputs |                                                          |  |  |  |
| Outputs                          | Solid State Relay                                        |  |  |  |
| Load types                       | DC general use, DC resistance, DC Pilot Duty             |  |  |  |
| Maximum voltage                  | max ±30Vdc                                               |  |  |  |
| Maximum current                  | ±75mA                                                    |  |  |  |
| Maximum propagation delay        | 2 ms turn-on, 0.5 ms turn-off                            |  |  |  |
| Logic 1 (True, On)               | Low impedance (15Ω maximum)                              |  |  |  |
| Logic 0 (False, Off)             | High impedance (<1μA leakage current at 30V)             |  |  |  |

### U14 Pin-out

### Terminal Block 1 (TB1)

| Description          | Pi        |    | in |           | Description          |
|----------------------|-----------|----|----|-----------|----------------------|
| Analog Input Common  | A In Cmn  | 1  | 2  | A In0+    | Analog Input 0+      |
| Shield connection    | Case      | 3  | 4  | A In0-    | Analog Input 0-      |
| Analog Input 1       | A In Cmn  | 5  | 6  | A In1+    | Analog Input 1       |
| Analog Input 1       | Case      | 7  | 8  | A In1-    | - Analog Input 1     |
| Analog Input 2       | A In Cmn  | 9  | 10 | A In2+    | Analog Innut 2       |
| Analog Input 2       | Case      | 11 | 12 | A In2-    | - Analog Input 2     |
| Analog Input 2       | A In Cmn  | 13 | 14 | A In3+    | Analog Innut 2       |
| Analog Input 3       | Case      | 15 | 16 | A In3-    | - Analog Input 3     |
| Analog Output Common | A Out Cmn | 17 | 18 | A Out0    | Analog Output 0      |
| Shield connection    | Case      | 19 | 20 | A Out Cmn | Analog Output Common |
| Analan Outrot 4      | A Out Cmn | 21 | 22 | A Out1    | - Analog Quitnut 1   |
| Analog Output 1      | Case      | 23 | 24 | A Out Cmn | - Analog Output 1    |

The AInCmn pins are internally connected. The AOutCmn pins are internally connected.

### Terminal Block 2 (TB2)

| Description            | Pin     |    |    |         | Description                |  |
|------------------------|---------|----|----|---------|----------------------------|--|
| Registration/Quad Z 0+ | Reg/Z0+ | 1  | 2  | Clk/A0+ | SSI Clk/MDT Int/Quad A 0+  |  |
| Registration/Quad Z 0- | Reg/Z0- | 3  | 4  | Clk/A0- | SSI Clk/MDT Int/Quad A 0-  |  |
| SSI/MDT/Quad Common    | S/Q Cmn | 5  | 6  | Dat/B0+ | SSI Data/MDT Ret/Quad B 0+ |  |
| Shield connection      | Case    | 7  | 8  | Dat/B0- | SSI Data/MDT Ret/Quad B 0- |  |
|                        | Reg/Z1+ | 9  | 10 | Clk/A1+ |                            |  |
| Lligh around Channel 1 | Reg/Z1- | 11 | 12 | Clk/A1- | Ligh aroud Channel 1       |  |
| High-speed Channel 1 - | S/Q Cmn | 13 | 14 | Dat/B1+ | — High-speed Channel 1     |  |
| _                      | Case    | 15 | 16 | Dat/B1- |                            |  |
| Discrete I/O 0+        | D0+     | 17 | 18 | D1+     | Discrete I/O 1+            |  |
| Discrete I/O 0-        | D0-     | 19 | 20 | D1-     | Discrete I/O 1-            |  |
| Discrete I/O 2+        | D2+     | 21 | 22 | D3+     | Discrete I/O 3+            |  |
| Discrete I/O 2-        | D2-     | 23 | 24 | D3-     | Discrete I/O 3-            |  |

The S/Q Cmn pins are internally connected.

### **Connection Notes:**

Analog inputs 0-3 are isolated as a single group. Analog output 0-1 are isolated as a single group. There is no isolation between individual inputs in these groups.

The Reg/Z input uses the same common as the A and B encoder. Therefore, the Reg/Z input will not support an active low home signal such as an NPN open collector. The Reg/Z input will support a PNP open collector.

For best noise immunity, use shielded, twisted-pair wires and connect Cmn to transducer common with separate wire.

Discrete I/O points D0-D3 are individually isolated.

### Terminal Blocks:

The unpluggable terminal blocks include spring-cage terminals. User-supplied ferrules provide for push-in connections.

| Stranded Wire and Ferrule Size |                             |  |  |  |  |  |
|--------------------------------|-----------------------------|--|--|--|--|--|
| Conductor cross section        | 24 – 16 AWG                 |  |  |  |  |  |
|                                | $0.2 - 1.5 \text{ mm}^2$    |  |  |  |  |  |
| Conductor cross section,       | $0.25 - 1.5 \text{ mm}^2$   |  |  |  |  |  |
| ferrule no plastic sleeve      |                             |  |  |  |  |  |
| Conductor cross section,       | 0.25 - 0.75 mm <sup>2</sup> |  |  |  |  |  |
| ferrule with plastic sleeve    |                             |  |  |  |  |  |
| Stripping Length               | 10 mm                       |  |  |  |  |  |
| Ferrule Length                 | 10 – 12 mm                  |  |  |  |  |  |
|                                |                             |  |  |  |  |  |

# **Blank Slot Covers**

The blank slot covers protect the base connector from foreign particles. The covers hinge on the top hooks of the base and magnetically attach to the base. In addition, a hole allows the user to supply and install a screw for firm attachment to the base. Recommended screw size is  $\#6-32 \times 1/2$ " or  $\#6-32 \times 5/8$ ".

Part number: R2-SC



# **SD Card**

Delta Motion recommends using industrial-grade SD (SDSC) or SDHC cards with the CPU20L and CPU40. Industrial grade cards provide many benefits over commercial grade, including a wide temperature range and long data retention life. Customers may purchase a card from Delta Motion or supply their own standard form factor SDSC or SDHC card up to 32 GB with a FAT32 or FAT16 file system. Delta Motion offers an industrial rated, SDSC, 1 GB card:

| R2-MEM-SD-1G      |              |
|-------------------|--------------|
| Card family       | SDSC         |
| File system       | FAT16        |
| Form factor       | Standard     |
| Capacity          | 1 GB         |
| Memory type       | SLC          |
| Temperature range | -40 to +85°C |



Part number: R2-MEM-SD-1G

# **Cables**

Pigtail cables provide a compact, convenient option for RMC200 modules. These cables are for short distances between the RMC200 and terminal blocks within the same cabinet. For long cable runs, use cables with lower resistance and better shielding.

| Part Number      | For<br>Module | For Terminal<br>Block | Number Required per Module | Lengths*                      |
|------------------|---------------|-----------------------|----------------------------|-------------------------------|
| R2-CB-A8-nnA     | A8            | TB 1 or TB 2          | 2                          |                               |
| R2-CB-S8-nnA     | S8            | TB 1 or TB 2          | 2                          |                               |
| R2-CB-Q4-nnA     | Q4            | TB 1 or TB 2          | 2                          | - nn = 06<br>- 6 ft. (1.83 m) |
| R2-CB-LC8-nnA    | LC8           | TB 1 or TB 2          | 2                          |                               |
| R2-CB-CA4-nnA    | CA4           | TB 1 or TB 2          | 2                          |                               |
| R2-CB-CV8-nnA    | CV8           | TB 1 or TB 2          | 2                          | _<br>nn = 12                  |
| R2-CB-D24TB1-nnA | – D24         | TB1                   | 1 of each cable            | 12 ft. (3.66 m)               |
| R2-CB-D24TB2-nnA | - D24         | TB2                   | assembly (2 total)         | 12 10 (0.00 111)              |
| R2-CB-U14TB1-nnA | 114.4         | TB1                   | 1 of each cable            | _                             |
| R2-CB-U14TB2-nnA | – U14         | TB2                   | assembly (2 total)         |                               |

<sup>\*</sup>Contact Delta Motion for other lengths.



# **Voltage-to-Current Converters**

Delta Motion's voltage-to-current converters are designed for converting a voltage control output to current for current-controlled servo valves. Delta Motion offers several voltage-to-current converters to fit your needs. The maximum output current is adjustable in increments of 10mA up to the maximum output current range.

Notice that the CA4 and U14 analog outputs support up to  $\pm 20$ mA and do not need a converter for valves rated for  $\pm 20$ mA or less. Valves rated for  $\pm 40$ mA can typically be operated with  $\pm 20$ mA if the coils are wired in series rather than in parallel. The user must determine whether series connection is acceptable.

| Part<br>Number | Description                                           | Output<br>Current Range* | Power<br>Supply |
|----------------|-------------------------------------------------------|--------------------------|-----------------|
| VC2124         | 2-channel voltage-to-current converter                | ±100mA per channel       | 24Vdc           |
| VC2100         | 2-channel voltage-to-current converter                | ±100mA per channel       | ±15Vdc          |
| VC2100-HS      | 2-channel voltage-to-current converter – high speed** | ±100mA per channel       | ±15Vdc          |







VC2124

VC2100

VC2100-HS

- \* Channels can be connected in parallel to provide higher current. For example, two ±100mA channels connected in parallel will provide ±200mA.
- \*\* Most hydraulic control applications do not require a high-speed converter.

# **Terminal Blocks**

All RMCs ship with connectors. Connectors are also available form from Delta Motion. The table below lists the available connectors. These parts are also available from connector manufacturer Phoenix using these part numbers.

| Phoenix Connector Part No       | Delta Part No | Connector Description | For Modules                       |
|---------------------------------|---------------|-----------------------|-----------------------------------|
| FKC 2,5/ 3-ST-5,08-LR - 1792520 | EPA0078       | 3-pin Terminal Block  | PS4D, PS6D                        |
| FMC 1,5/ 3-ST-3,5-RF - 1952034  | EPA0166       | 3-pin Terminal Block  | CPU20L                            |
| FMC 1,5/ 8-ST-3,5-RF - 1952089  | EPA0081       | 8-pin Terminal Block  | CPU40, CPU20L                     |
| DFMC 1,5/ 9-ST-3,5-LR - 1790551 | EPA0079       | 18-pin Terminal Block | CA4                               |
| DFMC 1,5/12-ST-3,5-LR – 1790580 | EPA0080       | 24-pin Terminal Block | A8, S8, Q4, LC8, CV8,<br>D24, U14 |



# Connect. Control. Optimize.



# deltamotion.com

Delta Computer Systems, Inc. also doing business as Delta Motion