
DMCP User Guide Page 1 of 9 October 23, 2001

Delta Motion Control Protocol (DMCP)
User Guide

Why Another Protocol?
The RMC supports many application protocols; most were designed by other automation
companies. However, when Delta Computer Systems, Inc. needed to choose a protocol
to use for its own software, such as the RMCENET ActiveX Control, to communicate
with the RMC, it found that none of these protocols satisfied this simple list of
requirements:

1. It must have binary, little-Endian, word-aligned encoding.

2. It must have low data and processing overhead.

3. It must be flexible enough to allow addressing of a minimum of 65,536 16-bit
registers.

4. It must be non-connection based to support both UDP and TCP operating modes.

Therefore, Delta designed yet another application protocol, called Delta Motion Control
Protocol (DMCP).

DMCP versus Modbus/TCP
Users who want to control or monitor the RMC through TCP or UDP must select one of
the protocols the RMC supports. Delta recommends two of these protocols: DMCP and
Modbus/TCP. All other protocols supported by the RMC are either difficult to get
information on, complicated, or inefficient. We will now compare DMCP and
Modbus/TCP.

DMCP was designed by Delta Computer Systems for its own products and is not
implemented by other manufacturers. Modbus/TCP is an open protocol maintained by
Schneider Electric and implemented by many manufacturers; this is the main advantage
of Modbus/TCP.

The following chart compares the technical specifications of these two protocols:

Characteristics DMCP Modbus/TCP
Transport Protocols TCP, UDP TCP
Byte Order Big or Little Endian Big Endian (Motorola)
Data Alignment 16-bit 8-bit
Static Header Size 7 bytes 8 bytes
Maximum 16-bit
Registers per Packet

TCP: 2048
UDP: 512

Read: 125
Write: 100

DMCP User Guide Page 2 of 9 October 23, 2001

Because of the above statistics, DMCP can be significantly faster than Modbus/TCP, as
demonstrated by the following benchmark data:

Benchmarks DMCP Modbus/TCP
Read 125 words TCP: 6.27 ms

UDP: 5.21 ms
6.46 ms

Read 512 words TCP: 12.0 ms
UDP: 10.4 ms

31.2 ms (5 packets)

Read 2048 words TCP: 35.9 ms
UDP: 42.4 ms (4 packets)

109 ms (17 packets)

Although DMCP is up to three times faster for large packets, it is worth noting that the
majority of transfers for most applications are to the status and command areas, which are
both under 125 words. On those transfers the speed advantage is smallest. These
statistics were taken from a Windows application requesting data from an RMC.

From the above information, the selection criteria can be simplified to the following:

• Choose Modbus/TCP if you want to be able to reuse your code with non-Delta
Ethernet products in the future.

• Choose DMCP if you need the additional performance, especially sending large
amounts of data.

The rest of this document is dedicated to defining DMCP. For more information on
Modbus/TCP, see Schneider Electric’s web site at www.modicon.com.

DMCP Characteristics
DMCP satisfies the above requirements, which restated and slightly appended, comes to
this basic list of characteristics:

• DMCP servers will listen on registered TCP and/or UDP ports 1324. The RMC
listens on both. It also listens on TCP and UDP private ports 50000 because this was
the port used before we had a registered port. This private port is being phased out.

NOTE: Prior to RMC ENET firmware 20001108, the RMC only listened on the
private ports. However, these ports are being phased out, so we
recommend updating to 20001108 or newer firmware rather than using the
private ports.

• All values are binary encoded. Values larger than a byte will be word-aligned and be
in little-Endian (LSB first) format. The exception to this is that the data contents of
reads and writes can be issued in either big- or little-Endian, depending on the
function used.

• No checksum is included in this application layer protocol since it this data is already
checked in the TCP, UDP (optionally), and Ethernet protocols.

• No source and destination node addresses will be added to the protocol, as the source
and destination IP addresses and port numbers are already available in the IP, TCP,
and UDP layers.

DMCP User Guide Page 3 of 9 October 23, 2001

DMCP Format
DMCP is a simple request/response protocol. Once the client has an open TCP or UDP
connection, the client sends a request packet and the server responds with a packet. Of
course, UDP has no communication connection, but some API’s, including BSD sockets,
allow opening a virtual connection to avoid entering the IP address in every function call.
The client may send several requests—the server must respond in the order received—but
it is intended that only a few requests are made at a time, so the server can be designed
accordingly.

DMCP request packets have this simple format:

PktLen 00 FC-specific dataVer SeqNum FC

DMCP response packets have the exact same format as the request except that function
codes will have response bits set (see below) and the FC-specific data will be different.

NOTE: Prior to RMC ENET firmware 20000420, the RMC used version 1 of the packet
format, which is not documented here. We recommend instead upgrading to
20001108 or newer firmware.

The above fields are each described below:

• PktLen
This field gives the number of bytes in the entire packet excluding only the 2-byte
PktLen field. The valid range for this field is 5 to 1034 when using UDP and 5 to
4106 when using TCP.

• Ver
This gives the packet format version. Currently, this should be 02.

• SeqNum
The sequence number is echoed in the response from a server. The client need not
use this field, but when the UDP transport is used, it is highly recommended that the
sequence number be used to ensure that the responses received match the requests,
since packets can arrive out of order.

• FC (Function Code)
This single-byte field identifies the operation that will be made. The rest of this
document describes function codes and their usage. Function codes will always be
displayed in hexadecimal to simplify this document. Valid function code requests
will always fall between 00 and 1F. Response function codes will be fall into two
categories. Success response function codes are equal to the request function code
plus 80 (i.e. the range is 80 to 9F). Failure response function codes are equal to the
request function code plus 40 (i.e. the range is 40 to 5F).

• FC-specific data
Many function codes require additional data in the request and/or response packets.

DMCP User Guide Page 4 of 9 October 23, 2001

UDP Considerations
DMCP is designed to work over either TCP or UDP. However, because UDP does not
support retrying packets and does not guarantee that packets will arrive in the order sent,
a couple of additional issues should be considered. However, if used correctly, UDP will
give higher performance than TCP and gives the user better control over timeouts, so
advanced users may want to do the following:

• If IP packets are routed between networks, as opposed to be limited to a single
network, they can arrive at the target out of order from when they are sent. TCP
sequences the data before passing it to the application data, but UDP does not.
Therefore, for UDP you must use the SeqNum field in the DMCP header to match
responses with requests. Typically you will increment the SeqNum field in each new
request.

• If a packet is lost, then eventually the client must decide to retry the packet. The
client should use the DMCP response packet as the positive acknowledgement and a
timeout as a negative acknowledgement. Therefore, the client must be designed such
that it handles the case in which the response from the RMC is lost or delayed and
that response comes back after the retry is sent. Therefore, two replies would come in
a row. The client must discard the second unexpected reply.

Function Code List
Four function codes are currently defined for use outside Delta:

0x10 Read Device Registers (little Endian)
0x11 Write Device Registers (little Endian)
0x12 Read Device Registers (big Endian)
0x13 Write Device Registers (big Endian)

These function codes will be described below in numerical order.

DMCP User Guide Page 5 of 9 October 23, 2001

10 Read Device Registers (little Endian)

Description
This block reads from the device’s registers. These registers are in a flat address space
ranging from 0 to 65,535. On the RMC, these registers have pre-defined uses.
Therefore, you must refer to the RMC Register Map in the RMCWin online help to read
the data you wish.

Request
The request uses this format:

10 Address WordCnt000A 00 00 SeqNumVer

Address The register address to begin reading from.

WordCnt The number of registers to read (1-2048 in TCP, 1-512 in UDP).

Response
The success response follows this format:

WC*2+6 90 00 Data0

Data1 Datan-1

00 SeqNumVer

Data0-Datan-1 The data read from the address requested.

Example
The Command Position, Target Position, Actual Position, Counts, and Status Word for
axis 1 are located at register addresses 10-14. If a user wants to read these five registers,
the following packet would be sent to the RMC:

10 0A0A 00 00 05 000000 12 3102

If these fields have the values 4000 (0x0FA0), 4000 (0x0FA0), 4001 (0x0FA1), 4247
(0x1097), and 0x0043, the response would be the following:

90 0010 00 A0 0F A0 0F A1 0F

97 10 43 00

00 12 3102

DMCP User Guide Page 6 of 9 October 23, 2001

11 Write Device Registers (little Endian)

Description
This block writes to the device’s registers. These registers are in a flat address space
ranging from 0 to 65,535. On the RMC, these registers have pre-defined uses.
Therefore, you must refer to the RMC Register Map in the RMCWin online help to write
the data you wish.

Request
The request uses this format:

WC*2+10 11 Address WordCnt00 Data0

Data1 Datan-1

00 SeqNumVer

Address The register address to begin writing to.

WordCnt The number of registers to write (1-2048 in TCP, 1-512 in UDP).

Data0-Datan-1 The data to write to the address requested.

Response
The success response follows this format:

0005 00 91SeqNumVer

Example
To issue a Start Event (E) command to axis 0 with a command value of 100, the values
0x0064 and 0x0045 (ASCII for ‘E’) need to be written to registers 84 and 85
respectively. Therefore, the following packet would be sent to the RMC:

11 000E 00 54 00 02 00 64 00 45 0000 1202 32

The response would be the following:

0005 00 1202 9132

DMCP User Guide Page 7 of 9 October 23, 2001

12 Read Device Registers (big Endian)

Description
This block is identical to block 0x10, except that the address, word count, and data are
returned in big-Endian, or network, byte order. Notice that the Length field is still in
little-Endian byte order.

Request
The request uses this format:

12 Address WordCnt000A 00 00 SeqNumVer

Address The register address to begin reading from.

WordCnt The number of registers to read (1-2048 in TCP, 1-512 in UDP).

Response
The success response follows this format:

WC*2+6 92 00 Data0

Data1 Datan-1

00 SeqNumVer

Data0-Datan-1 The data read from the address requested.

Example
The Command Position, Target Position, Actual Position, Counts, and Status Word for
axis 1 are located at register addresses 10-14. If a user wants to read these five registers,
the following packet would be sent to the RMC:

12 000A 00 0A 00 050000 12 3302

If these fields have the values 4000 (0x0FA0), 4000 (0x0FA0), 4001 (0x0FA1), 4247
(0x1097), and 0x0043, the response would be the following:

92 0010 00 0F A0 0F A0 0F A1

10 97 00 43

00 12 3302

DMCP User Guide Page 8 of 9 October 23, 2001

13 Write Device Registers (big Endian)

Description
This block is identical to block 0x11, except that the address, word count, and data are
returned in big-Endian, or network, byte order. Notice that the Length field is still in
little-Endian byte order.

Request
The request uses this format:

WC*2+10 13 Address WordCnt00 Data0

Data1 Datan-1

00 SeqNumVer

Address The register address to begin writing to.

WordCnt The number of registers to write (1-2048 in TCP, 1-512 in UDP).

Data0-Datan-1 The data to write to the address requested.

Response
The success response follows this format:

0005 00 93SeqNumVer

Example
To issue a Start Event (E) command to axis 0 with a command value of 100, the values
0x0064 and 0x0045 (ASCII for ‘E’) need to be written to registers 84 and 85
respectively. Therefore, the following packet would be sent to the RMC:

13 000E 00 00 54 00 02 00 64 00 4500 1202 34

The response would be the following:

0005 00 1202 9334

DMCP User Guide Page 9 of 9 October 23, 2001

Revision Log
The following changes have been made to this protocol:

Date Author Changes

July 1, 1999 QT Original specification.

October 22, 1999 QT Added functions 0x12 and 0x13 for network byte order.
Increased the maximum length for TCP to 2048 words.

April 10, 2000 QT Adopted the DMCP User Guide from the internal
specification.

April 11, 2000 QT Minor clarifications.

March 8, 2001 QT Updated for version 2 of the packet format.

October 23, 2001 QT Made minor corrections in cases where sometimes
statements were made that were true for version 1 but not
for version 2.

